Космонавтика

Магнитная уздечка для невесомости

Космическая фантастика предсказывала, что в невесомости гравитацию заменят магниты, но реальная космонавтика до сих пор не очень-то оправдывала эти прогнозы. По мнению некоторых специалистов, в окружающей космонавта среде почти нет ферромагнитных материалов, а влияние магнитного поля на человека и приборы вызывает опасения. Да и сложно управлять усилием постоянных магнитов из-за малости их масс и габаритов. Однако вновь созданные магнитосодержащие устройства свободны от этих недостатков и обладают особыми преимуществами по сравнению с любыми другими структурами. О перспективах использования постоянных магнитов в условиях космического полета в беседе с Николаем ДОРОЖКИНЫМ рассказывает ведущий научный сотрудник РКК «Энергия» имени С.П.Королева, доктор технических наук, профессор Олег ЦЫГАНКОВ.

– Олег Семенович, известно, что невесомость очень сильно влияет на труд и повседневную жизнь космонавтов. Взять хотя бы бесконтрольный дрейф различных предметов внутри и снаружи орбитальной станции… Как бороться с этим, казалось бы, пустяковым неудобством?

– Как раз в этой связи была поставлена задача обеспечения возможности оперативной фиксации всей окружающей космонавта предметной среды, а также рационализации сборочных операций при дооснащении орбитальной станции (ОС) и ремонтных работах. Для быстродействующего соединения и скрепления твердых тел в условиях космического полета используются различные способы и средства.

Например, для сборки/стыковки модулей ОС между собой и с космическими кораблями задействован сложный электромеханический агрегат. Используются также механические, адгезионные, электростатические, пневмовакуумные способы и эластичные неметаллические материалы. Вполне естественно было обратиться и к явлению магнетизма. Магнетизм и невесомость как бы существуют во Вселенной почти в соответствии с диалектическим законом единства и борьбы противоположностей.

Особенность постоянных магнитов – их способность стабильно и практически неограниченно долго хранить однажды запасенную энергию, то есть служить источником магнитного поля без притока электрической энергии. В этом качестве постоянные магниты находят применение в радиоэлектронике, электротехнике, связи и других областях.

– А применительно к поставленной задаче?

– Здесь представляют интерес устройства, в которых магнитная энергия, запасенная в системе с постоянными магнитами, используется для создания механической силы или выполнения механической работы. К ним относятся магнитные плиты, замки, муфты, сепараторы, подъемные устройства. Их применение стало возможным благодаря созданию новых магнитных материалов, особенно сплавов кобальта и редкоземельных элементов. В частности, постоянные магниты на основе сплава самария и кобальта (SmCo5) – во всех отношениях наиболее эффективный материал для силовых магнитных систем (СМС), которые могут использоваться в космических условиях.

В системе с постоянным магнитом величина силового воздействия зависит от типа материала, размеров магнита и скорости изменения рабочего зазора. За исключением характеристик материалов магнита и магнитопроводов, все параметры, определяющие магнитную систему, являются геометрическими. Значит, если выбор материала не вызывает затруднений, то проектирование СМС сводится к определению ее оптимальной конфигурации. Очевидный признак оптимальности магнитной системы – минимальные зазоры в конструкции. Как правило, величина рабочего зазора диктуется условиями поставленной задачи, а технологические зазоры не должны превышать 0,1–0,15 мм.

– Чем привлекательны СМС для космической техники?

– Их достоинства – высокая надежность и возможность создания больших усилий без потребления энергии от внешних источников. При необходимости действие усилия может быть прекращено благодаря коммутации магнитного потока внутри системы с минимальными затратами энергии.

Силовое взаимодействие в магнитных системах замечательно тем, что необязателен вещественный контакт между взаимодействующими частями конструкции. Это позволяет создавать устройства для передвижения по вертикальным и потолочным ферромагнитным поверхностям. В случаях, когда исключено применение электрической энергии ввиду повышенной взрывоопасности, постоянный магнит может оказаться единственным средством решения задачи.

Основные требования, предъявляемые к космическим магнитно-фиксирующим системам, – соответствие функциональным возможностям космонавта в скафандре в условиях невесомости, безопасность, эффективность и минимальные массо-габаритные характеристики.

Экспериментальные оценки подтвердили: правильным выбором геометрии магнита можно добиться того, что влияние такого магнитного поля на радиоэлектронные приборы и слаботочные цепи отсутствует.

– А на человеческий организм?

– Всё живое строго адаптировано к магнитной компоненте среды обитания. Поле постоянных магнитов – самый безопасный вид электромагнитного поля из всех возможных. Его биотропные параметры – напряженность, экспозиция, локализация, вектор, градиент. Когда геометрические размеры источника поля небольшие, воздействие поля на человека имеет весьма ограниченный характер, а вектор и градиент могут не приниматься во внимание.

Таким образом, основные биотропные параметры для СМС с небольшими постоянными магнитами – напряженность и время воздействия поля на человека. В повседневной жизни человек имеет дело с полями, явно превосходящими значение геомагнитного поля. В предложенных же СМС магнитное поле локализовано, а величины возможных напряженностей много ниже адаптационных значений для человека.

– А насколько сложно проектирование СМС?

– Как говорится, хороший вопрос! Интерес к применению СМС в технике постоянно расширяется, а кажущаяся простота приводит к тому, что зачастую за проектирование берутся специалисты, недостаточно знакомые с вопросами их расчета и конструирования. В результате – большие трудности в обеспечении эффективности устройств. Здесь важно понимать, что СМС есть частный случай электромеханической системы с магнитным полем. Я могу об этом судить, поскольку сам занимался разработкой оснастки с использованием СМС для сварочных полуавтоматов, участвовал в разработке магнитошагающего сварочного агрегата для вертикальных и потолочных швов, а также установки и технологий для магнитно-импульсной обработки материалов. Этот опыт позволил добиться успеха в разработке СМС для космических условий, получен целый ряд авторских свидетельств на изобретения…

Работоспособность в натурных условиях наших разработок подтверждена экспериментом «ИСТОК-3», проведенным на орбитальной станции «Салют-7» с экспонированием в открытом космосе семейств магнитосодержащих устройств в течение девяти месяцев в 1985–1986 годах.

Практически принципиально новый класс устройств обладает присущими только им преимуществами: автоматизация процесса стыковки (самостыковка) на основе магнитного притяжения; быстродействие; закрепление объекта в заданном положении; осуществление подвижной связи (типа сферического или цилиндрического шарниров) между соединяемыми элементами; независимость от внешних источников энергии; практическая безотказность. Размыкание замка осевым усилием без штатного отключения может быть осуществлено только разрушением конструкции нагрузкой более 400 килограмм-силы.

Разработаны устройства для размещения и фиксации инструментов, крепежных изделий и других элементов технологической среды; сборки стержне-трубчатых конструкций; фиксации космонавта в заданной рабочей позиции; фиксации экспонируемых объектов. Комплект из двух магнитосодержащих дисков обеспечивает бесконтактное дальнодействие с зазором 10 мм, что позволяет фиксировать, ориентировать по азимуту и перемещать по неферромагнитной поверхности экспонируемые снаружи ОС объекты через гермооболочку и слой теплоизоляции. Имеются также экспериментальные конструкции самоориентирующихся полуразъемов электросоединителей.

– Как могут использоваться СМС для перемещения космонавта в невесомости?

– Для ходьбы по «тропе» из тонколистового ферромагнитного материала могут быть использованы отключаемые СМС, смонтированные на обуви скафандра; отключение производится путем постепенного отсоединения одного из полюсов. Такой подход представляется вполне реализуемым в условиях ничтожных значений гравитации – на Фобосе или астероидах.

– Будет ли расширяться использование СМС в космосе?

– Несомненно. Перспективы их применения можно предвидеть не только при нулевой гравитации, в невесомости (g = 0), но и в условиях 0,16 g на Луне и 0,38 g на Марсе при формировании инфраструктуры на этих небесных телах: в сооружениях, транспортных магистралях, энергокоммуникациях, при сборке солнечных батарей большой площади, крупных астрономических приборов, систем связи и других работах.

www.ng.ru

 
Новости по теме


Запуск российского орбитального телескопа выводит из небытия национальную космическую программу

«Спектр-Р», космический телескоп, который был выведен на орбиту 18 августа, поможет российской космической программе вернуться в нормальное состояние.

Последние новости

Необычный астероид с шестью хвостами

«Космическая машинка для поливки газонов». Вот одно из прозвищ, которое агентство НАСА дало любопытному астероиду P/2013 P5, который, подобно комете, выбрасывает не один и не два, а сразу шесть «хвостов» одновременно.

Челябинский метеорит: первые выводы исследователей

Ученые, занимающиеся исследованием метеорита, упавшего на Челябинск в феврале этого года, заявляют, что новые данные, полученные ими в результате анализа, опроса очевидцев падения и просмотра видео, в том числе любительского, имеют огромное значение для предупреждения следующего столкновения Земли с подобным объектом или, по крайней мере, смягчения последствий такого столкновения.

Curiosity обнаружил странный объект на Марсе

Передовой американский марсоход Curiosity обнаружил странный для Марса объект, не похожий ни на один образец марсианского грунта. Ученые теряются в догадках и ломают голову над тем, на что же наткнулся их марсоход в процессе своих исследований образцов марсианского грунта.