Названия созвездий на небе: как найти на карте, сколько их, а также список по алфавиту и фото

Исчезнувшие звезды

В ходе исследования астрономы проанализировали около 600 миллионов источников света и обнаружили порядка 150 000 на первый взгляд исчезнувших объектов. Эти отсутствующие источники света они сопоставили с изображениями из других наборов данных, чтобы выявить оставшихся кандидатов и определить, какие из них представляют собой реальные источники света, а не неисправность камеры или иные неполадки. В конечном итоге, исследователи выявили 100 исчезнувших источников света.

Если дальнейшие наблюдения подтвердят, что исчезнувший свет – это реальные астрономические события, то их можно будет разделить на две категории. Скорее всего, обнаруженные исчезнувшие объекты указывают на вспышки красных карликов, переменные звезды, послесвечение гамма-всплесков и другие кратковременные космические явления. Авторы научной работы отмечают, что по мере дальнейших наблюдений будут обнаружены еще сотни источников.

Так выглядит телескоп Джеймса Уэбба, который будет запущен в 2021 году

К тому же, в 2021 году состоится запуск космического телескопа Джеймса Уэбба (NASA), который позволит подробнее изучить атмосферы далеких экзопланет, а в 2022 году будет запущен Large Synoptic Survey Telescope – широкоугольный большой обзорный телескоп-рефлектор, который будет сканировать небо каждые три ночи. Новые телескопы, как справедливо полагают авторы исследования, ускорят охоту за странными, исчезающими объектами, которые меняют облик ночного неба.

Необходимо отметить, что 80% жителей Земли никогда не видели небо, таким, какое оно есть. Все дело в искусственных источниках освещения, которые стали причиной светового загрязнения или засвечиванием неба искусственными источниками освещения. Помимо того, что световое загрязнение мешает проводить астрономические наблюдения, оно меняет биоритмы живых существ. Более того, из-за избытка света в городах, умирают рыбы. Подробнее об этой проблеме читайте в увлекательном материале моего коллеги Рамиса Ганиева.

Наследие

К началу 20-го века сохранилось несколько тысяч изображений Луны, Солнца, солнечных затмений. Были сфотографированы все известные на тот момент планеты Солнечной системы и создана карта звездного неба, панорамы звездного неба, фотографии галактик и Млечного Пути, спектры звезд и газовых образований.

Туманность Лагуна (NGC 6523) в созвездии Стрельца, снятая в обсерватории Маунт-Вилсон в 1919 году.

Для проведения качественных астрофизических исследований потребовались новые способы фотографирования космических тел. Так появилась электрооптика, где регистрация света производилась преобразованием света в электрический ток. Фотоэлектрические методы регистрации развили фотометрию и спектрометрию, а также стали причиной создания цифровой съемки (CCD’s) и космической астрономии. В 1976 году, спустя после 18 лет после первого цифрового изображения, астрономами Аризонского университета производятся первые снимки космических объектов. Эффективность накопления света составляет около 70% в сравнении с 4% от химических эмульсий. Компьютерный анализ полученных фотографий также сделал ПЗС-матрицы популярными в научных кругах. Тогда этим преимуществом в виде новой технологии пользовались единицы, но уже к концу 80-х, когда начиналась эпоха космических телескопов, астрономы-профессионалы применяли исключительно новые технологии. Также преимуществом цифровой астрофотографии стала возможность ее свободной обработки.

Сверхновая 1987a в Большом Магеллановом облаке

Рубеж 20−21 веков ознаменовался резким скачком популярности астрофотографии — теперь любой желающий мог позволить себе цифровую камеру, которая снимает звездное небо. Рынок астрономических товаров приобретал новые позиции, такие как астрокамеры, астрографы и экваториальные монтировки для астрофотографии. В это же время появлялось много новых запатентованных изобретений для астрофотографов (например, наша отечественная маска Бахтинова). Даже те, кто не интересовался космосом, не могли не видеть красивые фотографии телескопа им. Хаббла, который стал вехой современных технологий и спектрального анализа. И по сей день сохраняется и развивается тенденция любительской астрофотографии. Астрофотографом стать может любой желающий, а видов астрофотографии стало огромное множество: как художественная, так и натуральная. Раньше для фотографирования звездного неба у людей уходили часы, сейчас космос доступен для нас по одному щелчку камеры.

Ссылки на интересные материалы:

На что нужно обратить внимание

Цветные карты будут бесполезны. Поскольку при наблюдениях ты используешь красный фонарь, то цвет карты окажется искажен. А красные тексты на бумаге просто исчезнут (проверь ради интереса!). Поэтому лучше всего, когда карта будет черно-белая, а еще лучше с оттенками серого цвета.

Серым цветом могут отмечаться второстепенные линии и надписи. Главная информация на карте — это звезды, поэтому они должны быть черного цвета. Размер звезд при печати связан с их яркостью, но часто бывают ситуации, когда сложно определить звездную величину по карте если рядом нет «контрастных» звезд. В этом случае полезно будет увидеть на карте не только название звезды, но и её звездную величину в виде цифр.

Вот посмотри пример поисковой 20-градусной карты самостоятельного изготовления (в Cartes du Ciel).

Карты лучше хранить в пластиковой папке, где каждый лист находится в отдельном файле. Это позволяет защитить бумагу от влажности или неаккуратного обращения. Папку лучше использовать с кольцами, чтобы можно было в любой момент перетусовать или вытащить нужный лист. Если атлас большой, то лучше заранее разместить листы в порядке наблюдений — не придется их искать в темноте.

Глобус звездного неба: экваториальная система координат

ЭКВАТОРИАЛЬНАЯ СИСТЕМА КООРДИНАТ. Глобус звездного неба напоминает земной: у него тоже есть два полюса и экватор. Экватор разделяет сферу неба на два полушария — Северное и Южное. Координата, подобная земной широте, называется склонением. На экваторе склонение равно 0°, на Северном полюсе 90°, на
Южном полюсе –90°. Прямое восхождение — это аналог земной долготы. Отсчитывают его по экватору, от 0° до 360°. Нулевой отметкой для прямого восхождения считается точка весеннего равноденствия.

С нашей точки зрения, звезды постоянно движутся. Но при этом их расположение относительно друг друга не меняется, созвездия были и остаются одинаковыми на протяжении сотен тысяч лет. Чтобы можно было находить их на небе, был создан небесный глобус. По внешнему виду он напоминает земной, только на нем изображены не материки и океаны, а скопления звезд, видимые с Земли.

Ось глобуса звездного неба проходит через Северный и Южный полюсы. Вокруг этой оси и происходит вращение всех небесных объектов. Есть у небесного глобуса и свой экватор, он перпендикулярен оси и совпадает с земным. Экватор разделяет сферу неба на два полушария, Северное и Южное. Чтобы понять, как располагаются и движутся звезды по небу, нужно представить, что земной шар находится внутри небесного глобуса.

Наблюдать за звездами лучше всего в таком месте, где хорошо виден горизонт со всех сторон. Но самое главное, чтобы был хороший обзор горизонта с юга: так вы будете находиться в правильной позиции, когда звезды восходят слева, а заходят справа

Система координат звездного неба схожа с земной, здесь тоже есть широта и долгота, только называются они по-другому. Координата, аналогичная широте, — это склонение. На экваторе звездного глобуса склонение равно 0°, на полюсе же 90°. Если светило располагается в Южном полушарии, то склонение приобретает отрицательное значение, то есть на Южном полюсе оно будет равно -90°.

Вторая важная координата на небесной сфере — прямое восхождение, это аналог земной долготы. Отсчитывают ее по экватору, от 0 до 360°. Нулевой отметкой для прямого восхождения считается точка весеннего равноденствия — место, где Солнце пересекает экватор 20 марта, когда день равен ночи по продолжительности.

Из-за того что Земля движется вокруг Солнца, время, когда звезды восходят и заходят, каждую ночь сдвигается на четыре минуты назад. В результате картина звездного неба меняется вместе со временем года

  • Что такое звезды и какие они бывают?
  • Яркость звезд и световой год
  • Красные гиганты, белые карлики, пульсары

Поделиться ссылкой

Астрономия

Учебник для 10 класса

Звездные карты, небесные координаты и время

§5.1. Карты и координаты

Чтобы сделать звездную карту, изображающую созвездия на плоскости, надо знать координаты звезд. Координаты звезд относительно горизонта, например высота, хотя и наглядны, но непригодны для составления карт, так как все время меняются. Надо использовать такую систему координат, которая вращалась бы вместе со звездным небом. Она называется экваториальной системой. В ней одной координатой является угловое расстояние светила от небесного экватора, называемое склонением δ (рис. 19). Оно меняется в пределах ±90° и считается положительным к северу от экватора и отрицательным — к югу. Склонение аналогично географической широте.

Рис. 19. Экваториальные координаты.

Вторая координата аналогична географической долготе и называется прямым восхождением ХХХ.

Прямое восхождение светила М измеряется углом между плоскостями большого круга, проведенного через полюсы мира и данное светило М, и большого круга, проходящего через полюсы мира и точку весеннего равноденствия (рис. 19). Этот угол отсчитывают от точки весеннего равноденствия γ против хода часовой стрелки, если смотреть с северного полюса. Он изменяется от О до 360° и называется прямым восхождением потому, что звезды, расположенные на небесном экваторе, восходят в порядке возрастания их прямого восхождения. В этом же порядке они кульминируют друг за другом. Поэтому а выражают обычно не в угловой мере, а во временной, и исходят из того, что небо за 1 ч поворачивается на 15°, а за 4 мин — на 1°. Поэтому прямое восхождение 90° иначе будет 6 ч, а 7 ч 18 мин = 109°30′. В единицах времени по краям звездной карты надписывают прямые восхождения.

Существуют также и звездные глобусы, где звезды изображены на сферической поверхности глобуса.

На одной карте можно изобразить без искажений только часть звездного неба Начинающим пользоваться такой картой трудно, потому что они не знают, какие созвездия видны в данное время и как они расположены относительно горизонта. Удобнее подвижная карта звездного неба. Идея ее устройства проста. На карту наложен круг с вырезом, изображающим линию горизонта. Вырез горизонта эксцентричен, и при вращении накладного круга в вырезе будут видны созвездия, находящиеся над горизонтом в разное время.

  1. Выразите 9 ч 15 мин 11 сек в градусной мере.
  2. По таблице координат ярких звезд, данной в приложении IV, найдите на звездной карте некоторые из указанных звезд.
  3. По карте отсчитайте координаты нескольких ярких звезд и проверьте себя, используя таблицу из приложения IV.
  4. По «Школьному астрономическому календарю» найдите координаты планет в данное время и определите по карте, в каком созвездии они находятся. Найди.е их вечером на небе.
  5. Пользуясь подвижной картой звездного неба, определите, какие зодиакальные созвездия будут видны над горизонтом в вечер наблюдения.

Stellarium Mobile Sky Map

Разработчики Stellarium решили сделать упор на реализм. Свой продукт они позиционируют как полноценный карманный планетарий. Приложение отображает то, что вы видите на небе невооруженным глазом, но только с сильным увеличением. Stellarium выглядит менее эффектно, чем некоторые другие программы. Зато информативность находится на высшем уровне. В каталоге хранится информация о более чем 600 000 звезд, а также о туманностях, галактиках, спутниках.

После идентификации каждого из этих объектов можно тщательно исследовать его. В базе данных хранятся фотографии, описания, интересные факты и другая информация. Доступен реалистичный взгляд на Млечный Путь. Присутствует моделирование восхода Солнца.

Для начинающего астронома Stellarium – отличная возможность обойтись без телескопа. Целая энциклопедия космоса свободно умещается в кармане.

Приложение доступно для iOS и Android.

Carte du Ciel

Последним из пионеров любительской астрономии был англичанин Исаак Робертс, который после 1885 года начал активно фотографировать ночное небо с помощью своего двадцатидюймового рефлектора f/5. Например, в 1888 году она провел трехчасовую экспозицию туманности в Андромеде (M31), а в 1893 выпустил книгу под названием «‎Подборка фотографий звезд, звездных скоплений и туманностей». Изначально у него был примечательный план, заключавшийся в создании фотографических карт всего северного неба, но позже он от него отказался, передав инициативу своим коллегам, одним из которых был Дэвид Гилл, который активно отстаивал позицию систематической каталогизации неба. Он получил финансирование от Королевского общества и начал исследование южного неба — обработать огромное количество полученных пластин он не успевал, потому начал отправлять свои исходники помощникам, одним из которых был Якобс Каптейн. Доброволец не имел возможности проводить наблюдения самостоятельно, потому в период 1896-1900 годов вместе с Гиллом составлял и каталогизировал карты, которые вошли в их каталог «Cape Photographic Durchmusterung», насчитывающий более 454 тысяч звезд. Таким образом Каптейн стал первым астрономом, внесшим весомый вклад в науку, но не проводящим наблюдения.

Еще один прорыв произошел по инициативе братьев Поля и Проспера Генри, которые в 1880 году начали каталогизировать звезды Млечного Пути по фотоснимкам. Для этого они построили шестидюймовый астрограф, с помощью которого наблюдатели достигли максимальной детализации (около 0,03 мм для звезды). Ошемляющим фактом стало то, что бессметное количество объектов Млечного Пути с помощью одной фотографии каталогизировалось за две минуты, когда вручную для этого потребовалось бы несколько лет. Братья получали фотографии очень тусклых звезд — для 12-й звездной величины это была двухминутная экспозиция, и для 16-й звездной — десятиминутная.

Карты дю Силь, фрагмент 118, сделанный в Королевской обсерватории, Бельгия, 1900 год

На примере туманности в Плеядах, где было обнаружено около двух тысяч новых звезд, стало ясно, что одной обсерватории с каталогизацией всего неба не справиться. По этому вопросу при поддержке Гилла Мушес была созвана международная конференция, в которой участвовало 58 астрономов из 16 стран. Темой обсуждения стала Карта неба (Carte du Ciel), которая бы стала каталогом карт со звездным полем в трех разных экспозициях. Фотографирование должно было проходить с помощью рефракторов, идентичных рефрактору братьев Генри. Для контроля и курирования создания каталога был создан международный комитет, ставший прародителем послевоенного Международного астрономического союза. Тем не менее, процесс каталогизации стал слишком утомительным, да настолько, что полный каталог не был закончен и к 1964 году. Вместо этого интерес научного сообщества к астрофотографии появился в рамках астрофизических исследований. Начали строиться огромные оптические приборы, наблюдающие внегалактические объекты — именно на базе этих устройств были открыты многообразие галактик и расширение Вселенной.

Таблица экваториальные координаты звезд

Как вы понимаете, здесь важно отметить значения склонения и прямого восхождения светил. Например, возьмём несколько разных звёзд

Звезда Склонение (градусы/минуты) Прямое восхождение (ч/мин)
Альтаир +8/44 19/48,3
Арктур +19/27 14/13,4
Вега +38/44 18/35,2
Ригель -8/15 5/12,1

координаты некоторых звезд

Итак, для того, чтобы найти звезды, используют поиск по координатам. Ведь они как раз отражают местоположение тела на карте неба. Кроме того, для определения их положения также применяют координаты или определённую систему.

Как видно, звездные координаты указывают с помощью двух величин или дуг, которые характеризуют, где располагается звезда на небесной сфере. Помимо этого, можно выделить главные различия между каждой системой. В первую очередь, это выбор центральной плоскости. А во вторую очередь, отличие заключается в выборе начала отсчёта.

Стоит отметить, что карта неба не отражает расстояние до светил. А лишь указывает, где они находятся. Вероятно, по этой причине при ориентировании на местности удобно обращаться к светящимся космическим соседям. Что, собственно говоря, на протяжении многих лет и делали люди.

Sky Map

Некоторые из наших читателей уже могут быть знакомы со Sky Map под названием Google Sky Map. Это оригинальное название данного приложения для наблюдения за звездным пространством. Первая версия приложения была выпущена 20 января 2012 года под лицензией Apache 2.0 с открытым исходным кодом. Она была уже загружена более чем 10 миллионов раз и пользователям она очень нравится.

Первое, что вам нужно сделать после установки приложения, — откалибровать компас. Для этого нужно просто следовать инструкциям на экране. Система будет готова к работе уже через несколько секунд.

После калибровки просто укажите на участок неба, который хотите рассмотреть более детально. Используйте значки в левой части экрана, чтобы отфильтровать различные типы небесных тел. Также можно искать определенную планету или звезду. Тогда на экране появится большая стрелка, указывающая путь к ней.

Sky Guide AR

Sky Guide AR – многофункциональное приложение для iPhone c поддержкой Apple Watch

Если приближается важное космическое событие, на часы придет соответствующее уведомление. Например, когда над вашей головой будет пролетать МКС (также можно узнать где она находится сейчас)

Вы можете сами выбирать, за сколько времени до события будет приходить уведомление. Наблюдайте за Луной, солнечной активностью и разными планетами.

За дополнительные 10 долларов открывается доступ к масштабированию в высоком разрешении. Другие премиум-функции: каталог звезд увеличивается в 50 раз (всего в базе данных около 2,5 миллиона звезд), эксклюзивные кинематографические туры по бесконечным просторам космоса. Конечно, за все это нужно заплатить. Есть и бесплатная версия, которую можно использовать в течение двух недель.

Ориентирование по звездной карте: Точка севера, юга, востока и запада, а также зенит

О том что представляет собой звездная карта, как и о принципах её составления, мы уже узнали. Сейчас поговори о том, как её использовать для наблюдения звездного неба.

Ответим для начала на два вопроса: Как узнать по карте, какие звезды сейчас видны на небе, какие не видны? Какие звезды видны на востоке и на западе?

Обе задачи решаются сразу, но сначала надо условиться в том, что считать за восток и запад. Обыкновенно мы делим видимый небесный свод и видимую часть земной поверхности на две половины: либо на северную и южную, либо на восточную и западную. Говорят, например: «Солнце восходит на востоке, а заходит на западе». Это верно, но слишком неточно, так как Солнце восходит и заходит каждый день в разных местах. Лучше вместо довольно абстрактных сторон — южной и северной, восточной, и западной взять четыре вполне определенные точки. Их можно наметить таким способом.

Вечером, став под открытым небом, найдите Полярную звезду и встаньте к ней лицом — так вы встанете по направлению точно к северу. Проведите на земле длинную прямую черту прямо вперед, и вообразите, что вы довели эту черту до видимого края неба. Та точка, в которой ваша воображаемая черта встретится с видимой вдали чертой горизонта, будет точка севера.

Пройдя несколько шагов вдоль вашей черты, обернитесь назад и смотрите прямо вдоль черты. Так вы наметите точку юга на линии горизонта.

Проведите другую черту поперек вашей черты так, чтобы получился правильный крест с совершенно ровными, прямыми углами. Станьте в середине креста, в точке пересечения двух проведенных вами линий, и вообразите, что концы поперечной черты креста также доведены до линии горизонта. Те точки, в которых они встречаются с линией горизонта, это будут точка востока и точка запада.

Запомните раз навсегда в вашей местности точки юга, севера, востока и запада, чтобы не намечать их каждый раз. Для этого заметьте в этих точках какое- нибудь дерево, куст, строение, но только выбирайте эти цели как можно дальше от себя: иначе, если вы выберете цели близкие, то стоит вам немного сойти с места, и они уж не совпадут с точками севера, юга, востока и запада.

Припомните еще пятую точку неба — зенит: если вы поставите в середине вашего креста из двух линий высокий прямой отвесный столб и вообразите себе, что вершина этого столба уперлась в небо, то точка, в которую она упрется, это и будет зенит. Наконец, если вы вообразите себе, что ваш столб пророс вниз сквозь землю, прошел сквозь центр земного шара, вышел наружу на той стороне и там уперся в небо, то получится еще пятая точка неба, противоположная зениту, в астрономии она называется надиром.

Вас может заинтересовать

Определяем положение звезд по звездной карте

Возвратимся к нашей задаче. Какие звезды видны у нас, например, в 11 часов вечера в середине июля, и в какой части неба искать каждую из них?

Северные околополярные звезды, до 30-й северной параллели, изображенные на круглой карте, видны все, как и во всякое время. Поставьте карту в положение 22 июня (Малая Медведица — вверх) и поверните ее против часовой стрелки на два часовых деления: получится положение звезд 22 июля в 9 ч. вечера. Поверните еще на два часовых деления: получится положение звезд в 11 часов. Внизу карты, в точке севера, будет 7-й час, а вверху, в зените, — 19-й час. Между 60-й и 45-й параллелями, то есть в зенитах разных мест от Санкт-Петербурга до Крыма, будут мелкие звездочки созвездия Дракона, а прямо к югу от зенита будет стоять Лира.

Из звезд же, изображенных на четырехугольной карте, будет видна ровно половина. В зените, как вы помните, стоит 19-й час. Положите четырехугольную карту перед собой так, чтобы против вас был 19-ый час (созвездие Стрельца). Здесь и будет точка юга — на нижнем краю карты и на 19-м часовом делении. На юге, и только на юге, над точкой юга, вы увидите на небе всю карту, с верху до низу.

Отсчитайте от точки юга шесть часов влево и шесть часов вправо: там будут точки востока (1-й час) и запада (13-й час). Но эти точки при­дется поставить уж не на нижнем краю карты, а посредине, на экваторе: на востоке и западе уж видны только созвездия севернее экватора, то есть с верху до середины карты.

Отсчитайте еще шесть часов влево от точки востока и вправо от точки запада: тот и другой отсчет сойдутся на 7 часу — там будет точка севера. Ее придется поставить на верхнем краю карты: над точкой севера не видно ни одной из звезд, изображенных на длинной карте под 7 часом, — они все будут ниже горизонта, а над горизонтом на севере будут только звезды, изображенные на круглой карте северных созвездий.

Вот способ еще короче и прямее. Установив точку юга и отметив ее на нижнем краю карты, отсчитайте от нее 12 часовых делении вправо: там будет точка севера, на верхнем краю карты. Проведите на карте прямую черту от точки юга к точке севера. Эта черта будет изображать линию горизонта. Что выше этой черты, то видно на западной стороне неба; что ниже, то скрывается под горизонтом.

Так же чертится и восточная половина линии горизонта, только надо отсчитывать от точки юга 12 часов влево. Все это понятнее на чертеже, особенно если вы сравните этот чертеж с чертежом, изображающим полный глобус, не разложенный на карты, и внутри его круг — горизонт. Этим способом нетрудно рассчитать, какие звезды видны, в какой стороне и на какой высоте над горизонтом.

Наблюдение

На протяжении нескольких часов наблюдения за ночным небом можно увидеть, как небесная сфера, включающая в себя светила, как одно целое, плавно вращается вокруг невидимой оси. Это движение назвали суточным. Движение светил совершается слева направо.

Луна и Солнце, также как и звезды, восходят на востоке, в южной части поднимаются на максимальную высоту, заходят на горизонте западной стороны. Наблюдая за восходом и заходом этих светил, обнаруживается, что в отличие от звезд, соответствуя разным дням года, они в разных точках восходят на востоке и в разных точках заходят на западе. В декабре Солнце на юго-востоке восходит и на юго-западе заходит. С течением времени точки запада и восхода смещаются к горизонту северной стороны. Соответственно, Солнце восходит в полдень выше над линией горизонта с каждым днем, длительность дня становится больше, а длительность ночи уменьшается.

Все созвездия

Солнце – звезда Солнечной системы

Солнце — единственная звезда, которая входит в Солнечную систему. От этого небесного светила во многом зависит жизнь на Земле. Его лучи согревают все живое, дарят тепло и радость жизни. Всего 8 минут и 20 секунд требуется, чтобы солнечный луч коснулся земной поверхности. Солнечная система кроме Солнца состоит также из небесных тел, которые движутся вокруг этой звезды. К ним относятся кометы, планеты со спутниками, астероиды, метеороиды, космическая пыль.

Солнце и планета Земля

Интересен факт, что масса Солнца составляет 99,8% от всей массы Солнечной системы. По величине, оно не такое огромное, как кажется с Земли. Существуют звезды намного больше и ярче. Желтый цвет также обманчив. В действительности Солнце, имея огромную температуру поверхности (6000К), посылает на Землю свет не желтого, как принято считать, а почти белого цвета. И лишь у поверхности Земли солнечный свет приобретает немного желтоватый оттенок. Это связано с тем, что атмосфера Земли поглощает коротковолновую часть спектра и здесь же происходит более сильное рассеяние.

Если проанализировать химический состав Солнца, то оно состоит на 73% от своей общей массы из водорода, на 25% из гелия. Остальные 2% занимают такие элементы, как кальций, азот, железо, кислород, магний, сера, хром, никель, магний, кремний, неон и углерод.

В центре Солнце имеет ядро. Его радиус составляет около 150000 километров, а в центре температурные показатели достигают свыше четырнадцати миллионов градусов.

Строение Солнца 

У Солнца сильнейшее магнитное поле. Солнечная активность, вызванная вариациями магнитного поля, способствует возникновению северного сияния и геомагнитных бурь, которые не всегда положительно влияют на здоровье многих людей.

Ученые-астрономы доказали, что Солнце прожило лишь половину своей жизни, которая должна длиться не менее десяти миллиардов лет. Возраст звезды был определен с помощью компьютерных технологий и составляет на сегодняшний день около 4,57 миллиарда лет.