Бета излучение

Виды электромагнитного излучения

Основная классификация электромагнитного излучения связана с частотой волны:

  • Наиболее распространённый тип — радиоволны с частотой до 300 тысяч кГц. Возникают в результате деятельности человека и природных явлений. Больше всего переживаний у пользователей возникает по поводу сетей мобильной связи, высокоскоростного интернета, тем более сейчас, когда начинается ввод в действие сетей 5G.
  • Тепловое (инфракрасное) излучение, которое считается основой жизни человечества. Частота таких волн достигает показателя 429 ТГц. Вопросы по безопасности воздействия чаще всего связаны с востребованными сейчас инфракрасными обогревателями, которые можно встретить не только на дачах, но и в многолюдных общественных местах.
  • Видимый свет, частотные характеристики расположены в диапазоне 385–790 ТГц. Именно за счёт его наличия происходит процесс фотосинтеза у растений. Даже с видимым спектром электромагнитных излучений могут быть связаны проблемы. Например, перебои в выработке организмом человека мелатонина, что вызывает нарушения сна.
  • Ультрафиолетовое излучение отличается частотой до 30 ПГц. В обычной жизни с такими источниками можно столкнуться, наблюдая работу электросварщика, или посещая медицинские учреждения во время дезинфекции отдельных помещений и палат.
  • К жёсткому излучению относят рентгеновские лучи, гамма-волны, частотные характеристики которых ещё на несколько порядков выше. Самый известный пример — радиация, но с таким излучением в повседневной жизни вряд ли придётся встретиться.

Также читайте: Виды распределительных устройств(РУ)

Практически у каждого типа электромагнитного излучения есть опасные свойства и факторы. Обычный видимый свет вполне может стать причиной повреждения сетчатки глаз, такой же эффект проявляется и в результате воздействия ультрафиолетовых лучей (обычная сварка).

Способы защиты от радиации

Чтобы «невидимый враг» нанес меньше повреждений организму, необходимо знать, как правильно защититься при воздействии радионуклидных источников. Существует несколько принципов радиационной безопасности, к ним относятся защита:

  • экраном (экранирование источников опасного излучения поглощающими материалами);
  • количеством (уменьшение мощности радиационных источников до минимальных значений);
  • расстоянием (увеличение расстояний от мест излучения к тем, где обитают люди);
  • временем (максимальное сокращение контакта с потенциально опасными источниками).


Методы защиты от радиации: расстоянием, веществом и временем К основному способу предотвращения облучения относится экранирование – специальные экраны и защитные костюмы могут обеспечить человеку безопасное пребывание в радиационных условиях. Cуществуют такие способы защиты от радиации зависимо от источника излучения:

  1. Защита от нейтронов: надеждой защитой станет полиэтилен, полимеры, бетонные конструкции, а также вода, парафин. Это объясняется тем, что свойство нейтронов – рассеивать энергию на легкие ядра.
  2. Защита от альфа-излучения: респиратор, обычный бумажный лист, резиновые перчатки.
  3. Защита от гамма-излучения: сталь, вольфрам, тантал, свинец (свинцовое стекло) и другие тяжелые металлы, а также бетон. Чем большая плотность металлов, тем интенсивнее происходит поглощение гамма-излучения.
  4. Защита от бета-излучения: стекло, алюминий (а точнее, его тонкий слой), плексиглас (органическое стекло), всем известный противогаз, прием радиопротекторов.

Где встречаются различные виды излучения

Нейтронное излучение обнаруживается при ядерных взрывах, в лабораторных и промышленных установках. Существуют 2 вида источников альфа-излучения: естественных и искусственных. К последним относятся:

  • ядерные реакторы;
  • объекты урановой промышленности;

Эксперименты, которые проводят на ускорителях заряженных частиц и в специализированных лабораториях. К естественным источникам альфа-излучения относятся:

  • ускоренные ядра гелия;
  • ядерный альфа-распад.

Удивительно, но гамма-излучение может исходить от старинных сувениров: в 1902 году радиоактивной глазурью покрывали ювелирные изделия, керамические предметов. Используя подобные добавки происходили цветное стекло. Также, опасные предметы встречаются в таких местах:

  • бывших территориях воинских формирований;
  • старом оборудовании для измерений;
  • медицинских приспособлениях;
  • кучах металлолома.

Бета-излучение находится в естественном радиоактивном поле Земли. Такой вид излучения обнаруживается в некоторых месторождениях руды.


Проценты радиации, получаемые человеком

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Какой из типов радиоактивного излучения представляет собой поток положительно заряженных частиц?

1) ​\( \alpha \)​-излучение
2) ​\( \beta \)​-излучение
3) ​\( \gamma \)​-излучение
4) поток нейтронов

2. При исследовании естественной радиоактивности были обнаружены три вида излучений: альфа-излучение, бета-излучение и гамма-излучение. Что представляет собой гамма-излучение?

1) поток электронов
2) поток нейтронов
3) поток ядер атомов гелия
4) электромагнитное излучение

3. При исследовании естественной радиоактивности были обнаружены три вида излучений: альфа-излучение (поток альфа-частиц), бета-излучение (поток бета-частиц) и гамма-излучение. Каковы знак и модуль заряда бета-частиц?

1) отрицательный и равный элементарному заряду
2) положительный и равный по модулю двум элементарным зарядам
3) положительный и равный по модулю элементарному заряду
4) альфа-частицы не имеют заряда

4. Радиоактивный препарат помещен в магнитное поле. В этом поле не отклоняются

A. ​\( \alpha \)​-лучи
Б. \( \beta \)-лучи
B. \( \gamma \)-лучи

Правильный ответ

1) только А
2) только А и Б
3) только В
4) только А и В

5. Какое из трёх типов излучения — ​\( \alpha \)​, ​\( \beta \)​ или ​\( \gamma \)​ — обладает наименьшей проникающей способностью?

1) ​\( \alpha \)​
2) \( \beta \)
3) \( \gamma \)
4) проникающая способность всех типов излучения одинакова

6. Какой вывод можно было сделать из результатов опытов Резерфорда?

1) атом представляет собой положительно заряженный шар, в который вкраплены электроны
2) ядро атома имеет такие же размеры, что и ​\( \alpha \)​-частицы
3) атом имеет положительно заряженное ядро, вокруг которого вращаются электроны
4) атом излучает и поглощает энергию порциями

7. Почему в опыте Резерфорда большая часть ​\( \alpha \)​-частиц практически не отклоняется от прямолинейной траектории?

1) ядро атома имеет малые но сравнению с \( \alpha \)-частицей размеры
2) ядро атома имеет положительный заряд
3) ядро атома имеет малые по сравнению с атомом размеры
4) ядро атома притягивает \( \alpha \)-частицы

8. Суммарный заряд электронов в нейтральном атоме:

1) отрицательный и равен по модулю заряду ядра
2) положительный и равен по модулю заряду ядра
3) может быть положительным или отрицательным, но равным по модулю заряду ядра
4) отрицательный и всегда больше по модулю заряда ядра

9. Число электронов в нейтральном атоме равно

1) числу нейтронов в ядре
2) числу протонов в ядре
3) суммарному числу нейтронов и протонов
4) разности между числом протонов и нейтронов

10. Атом становится отрицательно заряженным ионом, если

1) он потеряет электроны
2) к нему присоединятся электроны
3) он потеряет протоны
4) к нему присоединятся протоны

11. Установите соответствие между видом излучения (в левом столбце таблицы) и его характеристикой (в правом столбце таблицы). В таблице под номером вида излучения левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА
A. Альфа-излучение
Б. Бета-излучение
B. Гамма-излучение

ХАРАКТЕРИСТИКА ИЗЛУЧЕНИЯ
1. Отрицательный заряд, равный двум элементарным зарядам
2. Отрицательный заряд, равный элементарному заряду
3. Положительный заряд, равный по модулю двум элементарным зарядам
4. Положительный заряд, равный по модулю элементарному заряду
5. Отсутствие заряда

12. Из приведённых ниже высказываний выберите 2 правильных и запишите их номера в таблицу.

1) магнитное поле не действует на гамма-излучение
2) магнитное поле сильнее отклоняет альфа-частицы
3) магнитное поле сильнее отклоняет бета-частицы
4) все три вида излучения, обнаруженные при исследовании естественной радиоактивности, отклоняются магнитным полем
5) радиоактивностью обладают все элементы таблицы Менделеева

Радиоактивность в физике

Мы знаем, что атомы вещества состоят из ядра и вращающихся вокруг него электронов. Так вот ядро — это в принципе очень устойчивое образование, которое сложно разрушить. Однако, ядра атомов некоторых веществ обладают нестабильностью и могут излучать в пространство различную энергию и частицы.

Это излучение называют радиоактивным, и оно включает в себя несколько составляющих, которые назвали соответственно первым трем буквам греческого алфавита: α-, β- и γ- излучение. (альфа-, бета- и гамма-излучение). Эти излучения различны, различно и их действие на человека и меры защиты от него. Разберем все по порядку.

Альфа-излучение

Альфа-излучение — это поток тяжелых положительно заряженных частиц. Возникает в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или воздухом, оно облучает внутренние органы и становится опасным.

Бета-излучение

Бета-излучение — это электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Во время аварии на Чернобыльской АЭС в 1986 году пожарные получили ожоги кожи в результате очень сильного облучения бета-частицами. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Гамма-излучение

Гамма-излучение — это фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения.

Как видно, альфа-излучение по его характеристикам практически не опасно, если не вдохнуть его частички или не съесть с пищей. Бета-излучение может причинить ожоги кожи в результате облучения. Самые опасные свойства у гамма-излучения. Оно проникает глубоко внутрь тела, и вывести его оттуда очень сложно, а воздействие очень разрушительно.

В любом случае без специальных приборов знать, что за вид радиации присутствует в данном конкретном случае нельзя, тем более, что всегда можно случайно вдохнуть частички радиации с воздухом. Поэтому общее правило одно — избегать подобных мест, а если уж попали, то укутаться как можно большим количеством одежды и вещей, дышать через ткань, не есть и не пить, и постараться поскорее покинуть место заражения. А потом при первой же возможности избавиться от всех этих вещей и хорошенько вымыться.

Альфа излучение является одним из трех радиоактивных потоков, которые возникают при распаде и представляет собой поток частиц с положительным зарядом.

Очень многих людей интересует, что же действительно оно собой представляет и какое влияние оказывает на человеческий организм.

Дозы облучения радиацией

Чтобы определить биологический механизм действия ионизирующего электромагнитного излучения на единицу массы вещества организма, используются величины грей (Гр) или рад (рад), указывают на поглощенную дозу радиации. Эквивалентная доза рассчитывает проникновение и влияние радионуклидов на живые организмы, измеряется в греях (Гр). Экспозиционную дозу представляет ионизация воздуха в рентгенах (Р). Индивидуально рассчитать количество необходимого облучения можно с помощью эффективной эквивалентной дозы в зивертах (Зв) или бэрах (бэр).

В каких единицах чаще всего измеряют радиацию:

  • 1 Зв = 100 Р
  • 1 Зв = 100 бэр;
  • 1 мкЗв = 0, 000001 Зв.

Эти показатели используются в соответствии с принятой Международной системой единиц физических величин. Применяются для обозначения степени и уровня ионизирующего излучения, оценки наносимого ущерба здоровью людей.

Ионизирующее излучение

Всё это- не фрагмент бреда сумасшедшего, взятый из истории его болезни и не краткий синопсис очередного голливудского боевика. Это окружающая нас реальность, которая называется радиоактивное или ионизирующее излучение, если коротко — радиация.

Явление радиоактивности в общих чертах было сформулировано французским физиком А. Беккерелем в 1896 году. Конкретизировал это явление и более подробно описал Э. Резерфорд в 1899 году. Именно он смог установить, что радиоактивное излучение неоднородно по своей природе и состоит, как минимум, из трёх видов лучей. Эти лучи по-разному отклонялись в магнитном поле и поэтому получили разное название. Проникающая способность альфа, бета и гамма-излучения различна.

Альфа-лучи

В магнитном поле они отклоняются так же, как и и положительно заряженные частицы. В дальнейшем было выяснено что это тяжёлые, положительно заряженные ядра атомов гелия. Возникают при распаде более сложных атомных ядер, например, урана, радия или тория. Обладают большой массой и относительно низкой скоростью излучения. Это обуславливает их невысокую проникающую способность. Они не могут проникнуть даже сквозь лист бумаги.

Но при этом альфа-частицы обладают очень большой ионизирующей энергией, что является причиной их способности наносить очень серьёзные повреждения на клеточном уровне. Из всех видов лучей именно альфа характеризуются самыми тяжёлыми последствиями в случае их воздействия на организм.

Это разрушающее влияние случается только в случае непосредственного контакта с предметами, излучающими альфа-лучи. На практике это происходит в результате попадания радиоактивных элементов внутрь организма через желудочно-кишечный тракт при приёме пищи или воды, а также при вдыхании воздуха, насыщенного радиоактивной пылью. Кроме того альфа-частицы могут легко проникнуть в организм через повреждения кожных покровов. Разносясь с током крови по всему организму, они обладают способностью накапливаться, оказывая сильнейшее разрушающее воздействие в течение многих лет.

Необходимо иметь в виду, что попадающие в организм радиоактивные вещества, не выводятся из него самостоятельно. Человеческий организм практически никак не защищён от подобного рода проникновений. Он не может нейтрализовать, переработать, усвоить или вывести самостоятельно радиоактивный изотоп, попавший внутрь.

Читать также Опасность радиации для жизни и ее угроза для здоровья человека

Бета-лучи

Отклоняются в ту же сторону что и отрицательно заряженные частицы. Источником бета-излучения являются внутриядерные процессы, связанные с превращением протона в нейтрон и наоборот- нейтрона в протон. При этом происходит излучение электрона или позитрона. Скорость распространения довольно высокая и приближается к скорости света. Бета-излучение обладает гораздо большей проникающей способностью, чем альфа-излучение, но ионизирующее воздействие выражено гораздо слабее.

Бета-излучение легко проникает сквозь одежду, но тонкий лист металла или средней толщины деревянный брусок полностью останавливают его. В отличие от альфа-излучения, бета-лучи способны наносить дистанционное поражение на расстоянии нескольких десятков метров от источника радиации.

Гамма- лучи

Эти лучи оказались нейтрально заряженными и никак не отклонялись в магнитном поле. Гамма-излучение представляет собою электромагнитную энергию, излучаемую в виде фотонов. Эта энергия освобождается в момент изменения энергетического состояния ядра атома.

Данный вид излучения характеризуется высокой скоростью, равной скорости света и крайне высокой проникающей способностью. Чтобы остановить гамма-излучение необходимы толстые бетонные стены. Парадокс состоит в том, что данный вид лучей менее всего способен оказывать разрушающее действие на организм. Их ионизирующее воздействие в сотни раз слабее бета-излучения и в десятки тысяч раз слабее альфа-излучения. Но способность преодолевать значительные расстояния и высокие проникающие свойства делают эти лучи потенциально наиболее опасными для человека. Поэтому остановимся на этом виде излучения более подробно.

2.1. Определение основной погрешности и проверка диапазона измерений

2.1.1. Аппаратура

Наборы образцовых источников альфа-излучения 239Puтипов 1П9, 2П9, 3П9, 4П9, 5П9, 6П9.

Наборы образцовых источников бета-излучения 90Sr+ 90Yтипов 1С0, 2С0, 3С0, 4С0, 5С0, 6С0.

Разряд источников выбирают в соответствии с требованиями ГОСТ 8.033-84.

2.1.2. Подготовка к испытаниям

2.1.2.1. Испытания радиометра проводят в нормальных условиях в соответствии с требованиями ГОСТ 27451-87. Уровень фона гамма-излучения не должен превышать 20 мкР×ч-1.

(Измененная редакция, Изм. № 2).

2.1.2.2. Радиометр включают, прогревают в течение времени установления рабочего режима. Дальнейшую подготовку к испытаниям проводят по технической документации, утвержденной в установленном порядке.

2.1.3. Проведение испытаний

2.1.3.1. Из наборов источников выбирают источники с площадью активной поверхности большей, чем фиксируемая площадь контролируемой поверхности, указанная в НТД на конкретные радиометры. Источник альфа- или бета-излучения в каждой проверяемой точке (п. 1.6) диапазона (поддиапазона) соответственно для испытуемого радиометра, измеряющего плотность потока альфа- или бета-частиц, помещают на расстоянии от чувствительной поверхности детектора, указанном в НТД на конкретные радиометры.

В каждой проверяемой точке, указанной в НТД на конкретные радиометры, снимают показания.

Примечания

1. Если площадь активной поверхности источника меньше площади, фиксируемой блоком детектирования, измерения проводят при нескольких положениях источника в пределах этой площади.

Если площадь активной поверхности источника более чем в 1,5 раза превышает площадь, фиксируемую блоком детектирования, измерения проводят при нескольких положениях детектора в пределах активной поверхности источника.

Число положений источника-блока детектирования m должно быть указано в НТД на конкретные радиометры.

2. Число измерений в каждом положении источника-блока детектирования п должно быть таким, чтобы оценка среднего квадратического отклонения результата измерений, вычисленная в соответствии с требованиями ГОСТ 8.207-76, не превышала 0,1 предела основной погрешности.

2.1.4. Обработка результатов

2.1.4.1. Доверительную границу основной погрешности Q в каждой проверяемой точке диапазона (поддиапазона) вычисляют:

для источника, площадь активной поверхности которого меньше фиксируемой площади контролируемой поверхности, по формуле

(1)

— среднеарифметическое значение показаний при m положениях источника в пределах фиксируемой площади контролируемой поверхности;

Ф — поток частиц с активной поверхности источника в угол 2p, отнесенный к фиксируемой площади контролируемой поверхности (условное значение потока частиц с единицы площади);

Ф — поток частиц с активной поверхности источника в угол 2p;

d — фиксируемая площадь контролируемой поверхности, указанная в НТД на конкретные радиометры;

— среднеарифметическое значение показаний при п измерениях при каждом положении источника в пределах фиксируемой площади;

Фm,n — значение n-го показания при измерении в положении т;

для источника, площадь которого больше фиксируемой площади контролируемой поверхности, по формуле

(2)

— среднеарифметическое значение показаний при т положениях блока детектирования в пределах активной поверхности источника;

Ф — поток частиц с активной поверхности источника в угол 2p;

Ф — поток частиц с единицы площади активной поверхности источника;

— среднеарифметическое значение показаний при п измерениях в каждом положении детектора или фиксируемой площади контролируемой поверхности в пределах активной поверхности источника;

Фm,n — значение n-го показания при измерении в положении m;

S — площадь активной поверхности источника.

Как защититься от бета-излучения?

Бета-излучение — это корпускулярное излучение, поток электронов (или позитронов), возникающий в следствие бета-распада радиоактивных изотопов. Бета-частицы делятся на электроны (отрицательно заряженные) и позитроны (положительно заряженные). Значительное воздействие бета-излучения на ткани организма может привести к ожогам и лучевой болезни. При попадании вещества, испускающего бета-частицы, внутрь организма, облучение происходит изнутри. Лучевое поражение ведет к гибели клеток организма, его тканей и летальному исходу в итоге.

Проникающая способность бета-излучения высока: пробег в воздухе — несколько метров, проникновение в биологические ткани — несколько сантиметров. Внешнее бета-излучение оказывается опаснее всего при попадании на слизистую или открытые участки кожи. После взрыва на Чернобыльской АЭС местному населению не рекомендовалось ступать по земле босыми ногами, наблюдались ожоги стоп у людей, прошедших на расстоянии 50-100 метров от самой АЭС.

Источники бета-излучения

В природе не встречается источников бета-излучения в целом: электроны излучает солнце, излучающее все виды частиц, бета-излучение содержится в естественном радиоактивном поле Земли, так же в некоторых месторождениях руды могут содержаться примеси частиц, излучающих бета-частицы.

Среди химических элементов источниками бета-излучения являются следующие элементы:

Источники бета-излучения используются в медицине при рентгеновском просвечивании тонкостенных сосудов, при лечении внутренних органов и участков кожи; на основе этого излучения была создана лучевая терапия; широко используются в химии; в технике при процессе ремонта машин для контроля автоматизированных процессов.

Взаимодействие бета-частиц с веществом

Проходя через вещество бета-частицы теряют свою энергию. Энергия теряется в результате столкновения частиц с атомами вещества. Существенную роль в потере энергии играет радиационное торможение: при рассеивании кулоновским полем ядра заряженной частицы, она получает ускорение и в следствие этого возникает тормозное электромагнитное излучение. В научных и практических целях крайне необходимо иметь знание о свойствах бета-частиц и процессах потери их энергии при взаимодействии с веществами.

Влияние на человеческий организм

Интенсивная ионизация способствует тому, что мощный энергетический поток, исходящий из источника, за короткий промежуток времени становится очень слабым. Из-за такой потери энергоресурса поражающая способность альфа-излучения становится крайне незначительной. Оно не в силах даже пройти сквозь омертвевшие кожные клетки, потому оно безопасно для организма при внешнем воздействии.

Из этого можно сделать вывод, что это облучение может представлять опасность лишь при попадании в открытые раны. Оказавшись внутри организма, частички существенно ускоряют деление клеток, что способствует изменению информации в генах, мутациям и формированию злокачественных опухолей. А при наличии лучевой болезни гибель неизбежна.

Сравнительная таблица с характеристиками различных видов радиации

характеристика Вид радиации
Альфа излучение Нейтронное излучение Бета излучение Гамма излучение Рентгеновское излучение
излучаются два протона и два нейтрона нейтроны электроны или позитроны энергия в виде фотонов энергия в виде фотонов
проникающая способность низкая высокая средняя высокая высокая
облучение от источника до 10 см километры до 20 м сотни метров сотни метров
скорость излучения 20 000 км/с 40 000 км/с 300 000 км/с 300 000 км/с 300 000 км/с
ионизация, пар на 1 см пробега 30 000 от 3000 до 5000 от 40 до 150 от 3 до 5 от 3 до 5
биологическое действие радиации высокое высокое среднее низкое низкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.

Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.