I. механика

Содержание

Движение по окружности

Движение по окружности — простейший случай криволинейного движения тела, когда тело движется вокруг некоторой точки

Очень важно разделить движение по окружности и вращение тела

При вращательном движении тела все его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами.

Движение тела по окружности с постоянной по модулю скоростью — это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги. Это очень похоже на равномерное движение, только в данном случае мы имеем дело с дугами.

При движении по окружности тело двигается вокруг одной точки, а при вращении — все точки тела движутся вокруг оси вращения.

В видеролике ниже рассказано про ускорение при криволинейном движении. Оно складывается из двух составляющих — нормальной и тангенциальной. При равномерном движении по окружности тангенциальная составляющая отсутствует, остается нормальная, которую мы в данном случае называем центростремительной.

Центростремительное ускорение

При движении по окружности модуль скорости постоянен, а вот направление скорости постоянно меняется. За изменение направления скорости отвечает центростремительное ускорение.

Центростремительное ускорение

aц = v^2/R

aц — центростремительное ускорение [м/с^2]

v — скорость [м/с]

R — радиус окружности

Задачка

Мотоцикл движется по закруглённому участку дороги радиусом 120 м со скоростью 36 км/ч. Чему равно центростремительное ускорение мотоцикла?

Решение:

Возьмем формулу центростремительного ускорения тела

aц = v^2/R

В условии задачи скорость дана в километрах в час, а радиус в метрах. Значит, нужно перевести скорость в м/с, чтобы избежать коллапса в решении.

36 км/с = 10 м/с

Теперь можно подставить значения в формулу:

aц = 10^2/120 = 100/120 = 10/12 ≃ 0,83 м/с^2

Ответ: центростремительное ускорение мотоциклиста равно 0,83 м/с^2

Приложения

Работа множества обычных вращающихся механических систем легче всего описать в терминах центробежной силы. Например:

  • Центробежный регулятор регулирует скорость двигателя с помощью прядильных масс , которые перемещаются в радиальном направлении, регулируя дроссель , поскольку двигатель изменяет скорость. В системе отсчета вращающихся масс центробежная сила вызывает радиальное движение.
  • Центробежная муфта используется в небольших устройствах с питанием от двигателя , таких как цепные пилы, карт и модели вертолетов. Он позволяет двигателю запускаться и работать на холостом ходу, не приводя в движение устройство, но автоматически и плавно включает привод по мере увеличения частоты вращения двигателя. используемые в скалолазании, и используемые во многих автомобильных ремнях безопасности, работают по тому же принципу.
  • Центробежные силы могут использоваться для создания искусственной гравитации , как в предлагаемых конструкциях вращающихся космических станций. Марс тяжесть биоспутник бы изучал влияние Марс -LEVEL тяжести на мышах с гравитацией моделируемой таким образом.
  • Спин литье и центробежное литье являются способами производства , которые используют центробежную силу для дисперсного жидкого металла или пластика в течение отрицательного пространства прессов — формы.
  • Центрифуги используются в науке и промышленности для разделения веществ. В системе отсчета, вращающейся с центрифугой, центробежная сила вызывает градиент гидростатического давления в заполненных жидкостью трубках, ориентированных перпендикулярно оси вращения, что приводит к возникновению больших выталкивающих сил, которые толкают внутрь частицы с низкой плотностью. Элементы или частицы более плотные, чем жидкость, движутся наружу под действием центробежной силы. По сути, это принцип Архимеда, порождаемый центробежной силой, а не гравитацией.
  • В некоторых аттракционах используются центробежные силы. Например, вращение гравитрона прижимает гонщиков к стене и позволяет им подниматься над полом машины, несмотря на земную гравитацию.

Тем не менее, все эти системы также могут быть описаны, не требуя концепции центробежной силы, в терминах движений и сил в неподвижной раме, за счет некоторой большей осторожности при рассмотрении сил и движений внутри системы.

Общие сведения

Угловое ускорение тела, движущегося по окружности, определяет насколько изменяется скорость движения этого тела по окружности. Эту скорость также называют угловой скоростью. Когда мы говорим, что тело движется по окружности с ускорением, это может означать, что скорость уменьшается или увеличивается, но ускорение также может быть вызвано изменением направления движения. Движение по окружности характеризуется угловым ускорением, в то время как движение по прямой — линейным.

Оранжевое тело двигается по окружности с угловым ускорением A, которое обозначено розовым цветом. Тангенциальная скорость этого тела — B (темно-синяя). Кроме силы, толкающей тело, на него также действует центростремительная сила C (фиолетовая), которая направлена в центр вращения. Эта сила создает центростремительное ускорение D (голубое), которое также направлено в центр вращения

Угловое ускорение часто путают с центростремительным ускорением, которое вызвано центростремительной силой. Эта путаница происходит из-за того, что и угловое и центростремительное ускорение используют для описания движения по окружности. На рисунке центростремительная сила обозначена фиолетовым цветом (C), а центростремительное ускорение — голубым (D). В отличие от углового ускорения, центростремительное обозначает изменение скорости по касательной. Эту скорость также называют тангенциальной скоростью, то есть мгновенной линейной скоростью тела по касательной к окружности в точке, где тело в это время находится. На рисунке эта скорость обозначена темно-синим цветом (B).

Угловое ускорение параллельно силе, которая вызывает движение по окружности, и перпендикулярно радиусу вращения. На нашем рисунке угловое ускорение обозначено розовым цветом (A). Центростремительное ускорение, напротив, направлено к центру вращения, то есть перпендикулярно направлению движения тела. Из этого следует, что угловое ускорение перпендикулярно центростремительному.

Американские горки

Отличие углового и центростремительного ускорения также в силах, которыми оно ускорение вызвано. Как мы уже говорили, центростремительное ускорение зависит от центростремительной силы. Эта сила всегда направлена к центру вращения, и заставляет тело двигаться по окружности. Классический пример действия этой силы — в американских горках. Именно центростремительная сила не позволяет кабинкам упасть вниз, даже когда они движутся в перевернутом положении по окружности. Угловое ускорение, с другой стороны, вызвано силой, толкающей тело вперед.

Вычисляя угловое ускорение, также необходимо не перепутать его с центростремительным. Чтобы найти центростремительное ускорение, квадрат мгновенной линейной скорости делят на радиус вращения. Под радиусом вращения мы подразумеваем расстояние от тела до центра вращения. Из приведенной выше формулы следует, что чем больше радиус, тем меньше центростремительное ускорение. Угловое ускорение можно найти, поделив момент силы на момент инерции. Здесь под моментом силы мы подразумеваем свойство тел, благодаря которому они начинают вращаться, если к ним приложить силу. Момент инерции — наоборот мера инертности твердых тел при вращательном движении. То есть, зависимость между вращением тела и противодействием этому вращению аналогична подобной зависимости для прямолинейного движения, которая описана во втором законе Ньютона: F = ma, где a — это линейное ускорение, F — это сила, которая вызывает движение по прямой, а m — масса тела, которая как раз и влияет на то, как сильно тело противостоит движению.

Факторы, влияющие на угловое ускорение

Описанная выше зависимость между угловым ускорением, моментом силы и моментом инерции говорит о том, что. изменяя момент силы и момент инерции, мы можем манипулировать ускорением. То есть, чтобы ускорить движение тела нам необходимо увеличить силу, вызывающую движение по окружности, или уменьшить момент инерции, то есть сопротивление этому движению. Какую из этих двух величин изменить — зависит от ситуации, так как иногда проще изменить одну, а иногда — другую. Момент инерции зависит от веса и формы тела. Под формой подразумевается радиус от центра вращения до самой удаленной точки тела. Поэтому в некоторых случаях имеет смысл изменить вес или форму тела, чтобы не тратить дополнительную энергию на увеличение силы. В других случаях, наоборот, изменить форму или вес нет возможности, поэтому более целесообразно увеличить силу.

Ускорение до высоких энергий

Хорошо известно, что магнитосферы AGN и пульсаров характеризуются сильными магнитными полями, которые заставляют заряженные частицы следовать за силовыми линиями. Если магнитное поле вращается (что имеет место для таких астрофизических объектов), частицы неизбежно будут испытывать центробежное ускорение. Новаторская работа Machabeli & Rogava была мысленным экспериментом, в котором шарик движется внутри прямой вращающейся трубы. Динамика частицы была проанализирована как аналитически, так и численно, и было показано, что если жесткое вращение сохраняется в течение достаточно длительного времени, энергия шарика будет асимптотически увеличиваться. В частности, Ригер и Мангейм, опираясь на теорию Мачабели и Рогава, показали, что фактор Лоренца бусины ведет себя как

γ знак равно γ 1 — Ω 2 р 2 c 2 {\ displaystyle \ gamma = {\ frac {\ gamma _ {0}} {1- \ Omega ^ {2} r ^ {2} / c ^ {2}}}}

( 1 )

где — начальный фактор Лоренца, Ω — угловая скорость вращения, — радиальная координата частицы, — скорость света. Из этого поведения видно, что радиальное движение будет иметь нетривиальный характер. В процессе движения частица достигнет поверхности светового цилиндра (гипотетическая область, где линейная скорость вращения в точности равна скорости света), что приведет к увеличению полоидальной составляющей скорости. С другой стороны, полная скорость не может превышать скорость света, поэтому радиальная составляющая должна уменьшаться. Это означает, что центробежная сила меняет знак.
γ {\ displaystyle \ gamma _ {0}} р {\ displaystyle r} c {\ displaystyle c}

Как видно из ( ), фактор Лоренца частицы стремится к бесконечности, если сохраняется жесткое вращение. Это означает, что на самом деле энергия должна быть ограничена определенными процессами. Вообще говоря, существует два основных механизма: обратное комптоновское рассеяние (ICS) и так называемый механизм пробоя бусинки на проволоке (BBW). Для струйных структур в АЯГ было показано, что для широкого диапазона углов наклона силовых линий по отношению к оси вращения ICS является доминирующим механизмом, эффективно ограничивающим максимально достижимые лоренцевы факторы электронов . С другой стороны, было показано, что BBW становится доминирующей при относительно низкой светимости AGN , что приводит к .
γ я C S м а Икс ∼ 10 8 {\ displaystyle \ gamma _ {ICS} ^ {max} \ sim 10 ^ {8}} L < 8 × 10 40 е р грамм s {\ Displaystyle L <8 \ times 10 ^ {40} \ mathrm {erg} / \ mathrm {s}} γ B B W м а Икс ∼ 10 7 {\ displaystyle \ gamma _ {BBW} ^ {max} \ sim 10 ^ {7}}

Центробежные эффекты более эффективны в миллисекундных пульсарах, поскольку скорость вращения довольно высока. Османов и Ригер рассмотрели центробежное ускорение заряженных частиц в области светового цилиндра крабоподобных пульсаров . Было показано, что электроны могут достигать лоренцевых факторов за счет обратного комптоновского рассеяния Клейна – Нишины вверх.
γ K N м а Икс ∼ 10 7 {\ displaystyle \ gamma _ {KN} ^ {max} \ sim 10 ^ {7}}

Движение по вертикали

Движение по вертикали — это частный случай равноускоренного движения. Дело в том, что на Земле тела падают с одинаковым ускорением — ускорением свободного падения. Для Земли оно приблизительно равно 9,81 м/с^2, а в задачах мы и вовсе осмеливаемся округлять его до 10 (физики просто дерзкие).

Вообще в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают значение: g = 9,8 м/с^2. В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с^2.

И кому же верить?

Все просто: для кого решается задача, тот и главный. В экзаменах берем g = 10 , в школе при решении задач (если в условии задачи не написано что-то другое) берем g = 9,8 м/с^2.

Частным случаем движения по вертикали (частным случаем частного случая, получается) считается свободное падение — это равноускоренное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы.

Помните о том, что свободное падение — это не всегда движение по вертикали. Если мы бросаем тело вверх, то начальная скорость, конечно же, будет.

Понятие скорости

Когда мы сравниваем движение каких-либо тел, то говорим, что одни тела двигаются быстрее, а другие — медленнее. Такую простую терминологию мы используем в повседневной жизни, говоря, например, о движении транспорта. В физике быстрота движения тел характеризуется определенной величиной. Эта величина называется скоростью. Общее определение скорости (в случае, если тело движется равномерно): Определение 1

Скорость при равномерном движении тела — это физическая величина, показывающая, какой путь прошло тело за единицу времени.

Под равномерным движением тела подразумевается, что скорость тела постоянна. Формула нахождения скорости: $v=\frac{s}{t}$, $s$ — это пройденный телом путь (то есть длина линии), $t$ — время (то есть промежуток времени, за который пройден путь).

Готовые работы на аналогичную тему

  • Курсовая работа Формула для расчета линейной скорости 430 руб.
  • Реферат Формула для расчета линейной скорости 220 руб.
  • Контрольная работа Формула для расчета линейной скорости 220 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Согласно международной системе СИ, единица измерения линейной скорости является производной от двух основных единиц — метра и секунды, то есть измеряется в метрах в секунду (м/с). Это значит, что под единицей скорости понимается скорость такого равномерного движения, при котором путь в один метр тело проходит за одну секунду.

Также скорость часто измеряют в км/ч, км/с, см/с.

Рассмотрим простой пример задачи на вычисление скорости.

Пример 1

Задача. Двигаясь равномерно, поезд за 4 ч проходит 219 км. Найти его скорость движения.

Решение. $v=\frac{219 км}{4 ч}=54,75\frac{км}{ч}$. Переведём километры в метры и часы в секунды: $54,75\frac{км}{ч}=\frac{54750 м}{3600c}\approx 15,2\frac{м}{c}$.

Ответ. $54,75\frac{км}{ч}$ или $15,2\frac{м}{c}$.

Из примера мы видим, что числовое значение скорости отличается в зависимости от выбранной единицы измерения.

Кроме числового значения, скорость имеет направление. Числовое значение величины в физике называют модулем. Когда у физической величины есть и направление, то эту величину называют векторной. То есть скорость — это векторная физическая величина.

Ты студент любого из вузов России? Приглашаем на платное интервью! Тема интервью — подготовка к сессии и проблемы, возникающие при этом Узнать подробности

На письме модуль скорости обозначается $v$, а вектор скорости — $\vec v$.

В свою очередь, такие величины как путь, время, длина и другие характеризуются только числовым значением. Тогда говорят, что это скалярные физические величины.

В случае, когда движение является неравномерным, используют понятие средней скорости. Формула средней скорости: $v_{ср}=\frac{s}{t}$, где $s$ — это весь пройденный телом путь, $t$ — всё время движения. Рассмотрим пример задачи на среднюю скорость, чтобы понять разницу.

Пример 2

Задача. Некоторый транспорт за 2,5 часа преодолевает путь в 213 км. Найти его $v_{ср}$.

Решение. $v_{ср}=\frac{213 км}{2,5 ч}= 85,2 \frac{км}{ч}=\frac{213000 м}{9000 с}\approx 23,7\frac{м}{с} $.

Ответ. $85,2 \frac{км}{ч}$ или $23,7\frac{м}{с} $.

Формула центростремительного ускорения при равномерном движении точки по окружности

Рассмотрим равномерное движение материальной точки по окружности. При таком перемещении величина скорости материальной точки неизменна ($v=const$). Но это не означает, что полное ускорение материальной точки при таком виде движения равно нулю. Вектор мгновенной скорости направлен по касательной к окружности, по которой перемещается точка. Следовательно, в этом движении скорость постоянно изменяет свое направление. Отсюда следует, что точка имеет ускорение.

Рассмотрим точки A и B которые лежат на траектории движения частицы. Вектор изменения скорости для точек A и B найдем как:

Если время, затрачиваемое на движение от точки A до точки B, стремится к нулю, то дуга AB мало не отличается от хорды AB. Треугольники AOB и BMN подобны, получим:

Величину модуля среднего ускорения определяют как:

Перейдем к пределу при $\Delta t\to 0\ $ от $\left\langle a\right\rangle \ \ $в формуле (4):

Вектор среднего ускорения составляет с вектором скорости угол равный:

При $\Delta t\to 0\ $ угол $\alpha \to 0.$ Получается, что вектор мгновенного ускорения составляет с вектором скорости угол $\frac{\pi }{2}$.

И так, что материальная точка, равномерно движущаяся по окружности, обладает ускорением, которое направленно к центру окружности (${\overline{a}}_n\bot \overline{v}$), его величина равна скорости в квадрате, деленной на радиус окружности:

где $\omega $ — угловая скорость движения материальной точки ($v=\omega \cdot R$). В векторном виде формулу для центростремительного ускорения можно записать, опираясь на (7) как:

где $\overline{R}$ — радиус-вектор, равный по длине радиусу дуги окружности, направленный от центра кривизны к местоположению рассматриваемой материальной точки.

Меняем направление: центростремительное ускорение

При вращательном движении по окружности линейная скорость мячика постоянно меняет направление, как показано на рис. 7.2. Ускорение, характеризующее такое изменение скорости, называется центростремительным (или центробежным). В любой точке вращательного движения с постоянной величиной и меняющимся направлением вектор линейной скорости перпендикулярен радиусу.

Если в показанных на рис. 7.2 положениях нить, удерживающая мяч, оборвется, то куда полетит мяч? Если в этот момент вектор линейной скорости направлен влево, то мяч полетит влево, а если этот вектор направлен вправо, то мяч полетит вправо, и т.д. Этот, казалось бы, простой и интуитивно понятный момент часто вызывает трудности у тех, кто впервые постигает физику.

Управляем скоростью с помощью центростремительного ускорения

Особенностью равномерного вращательного движения является постоянство величины линейной скорости. Это значит, что вектор ускорения не имеет компоненты, параллельной вектору линейной скорости, поскольку в противном случае величина линейной скорости менялась бы. Однако при равномерном вращательном движении меняется только направление линейной скорости. Такое изменение линейной скорости поддерживается центростремительным ускорением, направленным к центру окружности вращения и перпендикулярно вектору линейной скорости.

В примерах на рис. 7.1 и 7.2 на мяч со стороны нити действует сила натяжения нити, которая поддерживает его движение по окружности. Именно эта сила сообщает мячу центростремительное ускорение ​\( a_ц \)​, вектор которого показан на рис. 7.1. (Попробуйте раскрутить мяч с помощью привязанной к нему нити, и вы сразу же почувствуете действие этой силы со стороны нити.)

Часто возникает вопрос: если вектор ускорения мяча направлен к центру окружности, то почему мяч не движется к центру? Дело в том, что при равномерном вращательном движении это ускорение меняет только направление, а не величину линейной скорости.

Определяем величину центростремительного ускорения

Нам уже известно направление вектора центростремительного ускорения, а чему же равна его величина? Итак, величина центростремительного ускорения объекта, равномерно движущегося с линейной скоростью ​\( v \)​ по окружности с радиусом ​\( r \)​, равна:

Как видите, величина центростремительного ускорения обратно пропорциональна радиусу окружности ​\( r \)​ и прямо пропорциональна квадрату скорости ​\( v \)​. Поэтому не удивительно, что автомобиль на более крутых поворотах испытывает более сильное центростремительное ускорение.

Примеры задач с решением

Пример 1

Задание. Диск вращается вокруг неподвижной оси. Закон изменения угла поворота радиуса диска задает уравнение: $\varphi =5t^2+7\ (рад)$. Чему равно центростремительное ускорение точки A диска, которая находится на расстоянии $r=$0,5 м от оси вращения к окончанию четвертой секунды от начала вращения?

Решение. Сделаем рисунок.

Модуль центростремительного ускорения равен:
\

Угловую скорость вращения точки найдем как:

\

уравнение изменения угла поворота в зависимости о времени:

\

В конце четвертой секунды угловая скорость равна:

\

Используя выражение (1.1) найдем величину центростремительного ускорения:

\

Ответ. $a_n=800\frac{м}{с^2}$.

Пример 2

Задание. Движение материальной точки задается при помощи уравнения: $\overline{r}\left(t\right)=0,5\ (\overline{i}{\cos \left(\omega t\right)+\overline{j}{\sin (\omega t)\ }\ })$, где $\omega =2\ \frac{рад}{с}$. Какова величина нормального ускорения точки?

Решение. За основу решения задачи примем определение центростремительного ускорения в виде:

\

Из условий задачи видно, что траекторией движения точки является окружность. В параметрическом виде уравнение: $\overline{r}\left(t\right)=0,5\ (\overline{i}{\cos \left(\omega t\right)+\overline{j}{\sin (\omega t)\ }\ })$, где $\omega =2\ \frac{рад}{с}$ можно представить как:

\

Радиус траектории можно найти как:

\

Компоненты скорости равны:

\

\

Получим модуль скорости:

\

Подставим величину скорости и радиус окружности в выражение (2.2), имеем:

\

Ответ. $a_n=2\frac{м}{с^2}$.

Общие сведения

Явления, происходящие в окружающем мире, описываются рядом изменений, зависящих от времени и пространства. Простейшим видом такого процесса является движение, то есть изменение положения материальной точки относительно других окружающих объектов. Кинематика изучает любое перемещение, но при этом не выясняет вызвавших его причин. Несмотря на то что любое физическое тело имеет размеры, ими обычно пренебрегают, считая любое тело точкой.

Движение представляет собой векторную величину и является отрезком, соединяющим начальное положение с конечным. Путь же, пройденный точкой, считается скалярным и определяется как дуга траектории, пройденная телом за установленный промежуток времени.

Обозначать ускорение в физике условились латинской буквой «a». Находят параметр по формуле: a = dv / dt, где dV и dt — изменение скорости и времени. Существует несколько видов физической величины:

  1. Тангенциальное (касательное) — характеризует изменение быстроты, направленной по касательной.
  2. Центростремительное (нормальное) — наблюдается при перемещении как по окружности, так и по траектории, описываемой ненулевой кривизной.
  3. Угловое — показывает, как изменяется угловая скорость за определённый промежуток времени, то есть относительно центра вращения к радиусу окружности.
  4. Полное — складываемое из предыдущих видов ускорения.

Пусть имеется тело, которое движется по окружности. В начальный момент оно находилось в точке один, а после переместилось в точку два. Произошло это за время, равное Δt. За этот промежуток физический объект повернулся на угол f. Для описания процесса вводится понятие «угловая скорость». Обозначается она буквой гамма (w) и равняется углу, на который повернулось тело за единицу времени: w = f / Δt.

Простым примером нормального ускорения является движение по окружности. Вызывается оно силами, приложенными ортогонально вектору скорости. На чертеже его можно изобразить как вектор, перпендикулярный касательной пути в выбранной точке. Рассчитывается центростремительное ускорение по формуле: an = w 2 * R, где w — угловая скорость, R — радиус кривизны. В векторном виде формула принимает вид: an = (V2 / R) * e, где e — единичный вектор, рассчитываемый от центра кривизны к точке.

Вписываемся в повороты: учитываем радиус и наклон

Если вам приходилось ехать на автомобиле или велосипеде или даже бежать трусцой, то наверняка вы заметили, что в крутой поворот проще вписаться, если поверхность дороги немного наклонена внутрь поворота. Из опыта известно, что чем больше наклон, тем проще вписаться в поворот. Это объясняется тем, что в таком случае на вас действует меньшая центростремительная сила. Центростремительная сила обеспечивается силой трения о поверхность дороги. Если поверхность дороги покрыта льдом, то сила трения становится меньше и потому часто не удается вписаться в поворот на обледеневшей дороге на большой скорости.

Представьте, что автомобилю с массой 1000 кг нужно вписаться в поворот с радиусом Юм, а коэффициент трения покоя (подробнее о нем см. главу6) равен 0,8. (Здесь используется коэффициент трения покоя, поскольку предполагается, что шины по поверхности дороги.) Какую максимальную скорость может развить этот автомобиль без риска не вписаться в поворот. Итак, сила трения покоя шин о поверхность дороги ​\( F_{трение\,покоя} \)​ должна обеспечивать центростремительную силу:

где ​\( m \)​ — это масса автомобиля, ​\( v \)​ — его скорость, ​\( r \)​ — радиус, ​\( \mu_п \)​ — коэффициент трения покоя, a ​\( g \)​ = 9,8 м/с2 — ускорение свободного падения под действием силы гравитации. Отсюда легко находим скорость:

(Обратите внимание, что максимальная безопасная скорость прохождения поворота не зависит от массы автомобиля. — Примеч

ред.)

Это выражение выглядит очень просто, а после подстановки в него численных значений получим:

Итак, максимальная скорость безопасного проезда при таком повороте равна 8,9 м/с. Пересчитаем в единицы “км/ч”, в которых скорость указана на спидометре, и сравним. Получается, что 8,9 м/с = 32 км/ч, а на спидометре всего 29 км/ч. Прекрасно, но далеко не все водители умеют так быстро рассчитывать безопасную скорость прохождения поворотов. Поэтому конструкторы дорог часто строят повороты с наклоном внутрь, чтобы обеспечить центростремительное ускорение не только за счет силы трения, но и за счет горизонтальной компоненты силы гравитации.

На рис. 7.3 показан пример поворота дороги с некоторым наклоном под углом ​\( \theta \)​ к горизонтали. Предположим, что конструкторы решили полностью обеспечить центростремительное ускорение только за счет горизонтальной компоненты силы гравитации (т.е. без учета силы трения) ​\( F_н\sin\theta \)​, где ​\( F_н \)​ — это нормальная сила (подробнее о ней см. в главе 6). Тогда:

В вертикальном направлении на автомобиль действует сила гравитации ​\( mg \)​, которая уравновешивается вертикальной компонентой нормальной силы \( F_н\cos\theta \):

или, иначе выражая это соотношение, получим:

Подставляя это выражение в прежнее соотношение между центростремительной силой и нормальной силой, получим:

Поскольку ​\( \sin\theta/\!\cos\theta=tg\,\theta \)​ в то

Отсюда легко получаем, что угол наклона поворота дороги ​\( \theta \)​ равен:

Именно это уравнение используют инженеры при проектировании дорог

Обратите внимание, что масса автомобиля не влияет на величину угла, при котором центростремительная сила полностью обеспечивается только горизонтальной компонентой нормальной силы. Попробуем теперь определить величину угла наклона поворота с радиусом 200 м для автомобиля, движущегося со скоростью 100 км/ч или 27,8 м/с:

Для обеспечения безопасного движения автомобиля со скоростью 100 км/ч в повороте с радиусом 200 м без учета силы трения, инженеры должны создать наклон около 22°. Отлично, из вас может получиться неплохой инженер-конструктор автомагистралей!

Формула центростремительного ускорения

Прежде всего стоит заметить, что движение тела по окружности является сложным. Камень участвует в двух видах движения одновременно: под действием силы он движется к центру вращения, и одновременно по касательной к окружности, от этого центра удаляется. Согласно Второму закону Ньютона, сила, удерживающая камень на веревке, направлена к центру вращения вдоль этой веревки. Туда же будет направлен вектор ускорения.

Пусть за некоторое время t наш камень, равномерно двигаясь со скоростью V, попадает из точки A в точку B. Предположим, что в момент времени, когда тело пересекало точку B, на него перестала действовать центростремительная сила. Тогда за промежуток времени оно попало бы в точку K. Она лежит на касательной. Если бы в тот же момент времени на тело действовали бы только центростремительные силы, то за время t, двигаясь с одинаковым ускорением, оно оказалось бы в точке O, которая расположена на прямой, представляющей собой диаметр окружности. Оба отрезка являются векторами и подчиняются правилу векторного сложения. В результате суммирования этих двух движений за отрезок времени t получаем результирующую движения по дуге AB.

Если промежуток времени t взять пренебрежимо малым, то дуга AB будет мало отличаться от хорды AB. Таким образом, можно заменить движение по дуге движением по хорде. В этом случае перемещение камня по хорде будет подчиняться законам прямолинейного движения, то есть пройденное расстояние AB будет равно произведению скорости камня на время его движения. AB = V х t.

Обозначим искомое центростремительное ускорение буквой a. Тогда пройденный только под действием центростремительного ускорения путь можно рассчитать по формуле равноускоренного движения:

AO = at2 / 2.

Расстояние AB равно произведению скорости и времени, то есть AB = V х t,

AO – вычислено ранее по формуле равноускоренного движения для перемещения по прямой: AO = at2 / 2.

Подставляя эти данные в формулу и преобразуя их, получаем простую и изящную формулу центростремительного ускорения:

a = v2 / R

Словами это можно выразить так: центростремительное ускорение тела, двигающегося по окружности, равно частному от деления линейной скорости в квадрате на радиус окружности, по которой вращается тело. Центростремительная сила в таком случае будет выглядеть так, как на картинке ниже.

ФИЗИКА

§ 1.26. Равномерное движение точки по окружности. Центростремительное ускорение

Характерные особенности этого движения содержатся в его названии: равномерное — значит с постоянной по модулю скоростью (и = const), no окружности — значит траектория — окружность.

Равномерное движение по окружности

До сих пор мы изучали движения с постоянным ускорением. Однако чаще встречаются случаи, когда ускорение изменяется.

Вначале мы рассмотрим простейшее движение с переменным ускорением, когда модуль ускорения не меняется. Таким движением, в частности, является равномерное движение точки по окружности: за любые равные промежутки времени точка проходит дуги одинаковой длины. При этом скорость тела (точки) не изменяется по модулю, а меняется лишь по направлению.

Мы по-прежнему будем считать тело настолько малым, что его можно рассматривать как точку. Для этого размеры тела должны быть малы по сравнению с радиусом окружности, по которой движется тело.

Среднее ускорение

Пусть точка в момент времени t занимает на окружности положение А, а через малый интервал времени Δt — положение А1 (рис. 1.82, а). Обозначим скорость точки в этих положениях через и 1. При равномерном движении v1 = v.

Рис. 1.82

Для нахождения мгновенного ускорения сначала найдем среднее ускорение точки. Изменение скорости за время Δt равно Δ и = 1 — (см. рис. 1.82, а).

По определению среднее ускорение равно

Центростремительное ускорение

Задачу нахождения мгновенного ускорения разобьем на две части: сначала найдем модуль ускорения, а потом его направление. За время Δt точка А совершит перемещение = Δ.

Рассмотрим треугольники ОАА1 и А1СВ (см. рис. 1.82, а). Углы при вершинах этих равнобедренных треугольников равны, так как соответствующие стороны перпендикулярны. Поэтому треугольники подобны. Следовательно,

Разделив обе части равенства на Δt, перейдем к пределу при стремлении интервала времени Δt —» 0:

Предел в левой части равенства есть модуль мгновенного ускорения, а предел в правой части равенства представляет собой модуль мгновенной скорости точки. Поэтому равенство (1.26.1) примет вид:

Отсюда

Очевидно, что модуль ускорения при равномерном движении точки по окружности есть постоянная величина, так как v и г не изменяются при движении.

Направление ускорения

Найдем направление ускорения . Из треугольника A1CB следует, что вектор среднего ускорения составляет с вектором скорости угол β = . Но при Δt —> О точка А1 бесконечно близко подходит к точке А и угол α —» 0. Следовательно, вектор мгновенного ускорения составляет с вектором скорости угол

Значит, вектор мгновенного ускорения а направлен к центру окружности (рис. 1.82, б). Поэтому это ускорение называется центростремительным (или нормальным1).

Центростремительное ускорение на карусели и в ускорителе элементарных частиц

Оценим ускорение человека на карусели. Скорость кресла, в котором сидит человек, составляет 3—5 м/с. При радиусе карусели порядка 5 м центростремительное ускорение а = ≈ 2—5 м/с2. Это значение довольно близко к ускорению свободного падения 9,8 м/с2.

А вот в ускорителях элементарных частиц скорость оказывается довольно близкой к скорости света 3 • 108 м/с. Частицы движутся по круговой орбите радиусом в сотни метров. При этом центростремительное ускорение достигает огромных значений: 1014—1015 м/с2. Это в 1013—1014 раз превышает ускорение свободного падения.

Равномерно движущаяся по окружности точка имеет постоянное по модулю ускорение а = , направленное по радиусу к центру окружности (перпендикулярно скорости). Поэтому это ускорение называется центростремительным или нормальным. Ускорение а при движении непрерывно изменяется по направлению (си. рис. 1.82, б). Значит, равномерное движение точки по окружности является движением с переменным ускорением.

1 От латинского слова normalis — прямой. Нормаль к кривой линии в данной точке — прямая, проходящая через эту точку перпендикулярно к касательной, проведенной через ту же точку.