Содержание
Границы черных дыр
Первая из границ черной дыры называется пределом статичности. Это граница области, попадая в которую посторонний объект уже не может находиться в состоянии покоя и начинает вращаться относительно черной дыры, чтобы удержаться от падения в нее. Вторая граница зовется горизонтом событий. Все, что внутри черной дыры, когда-то проходило ее внешнюю границу и двигалось по направлению к точке сингулярности. По мнению ученых, здесь вещество вливается в эту центральную точку, плотность которой стремится к значению бесконечности. Люди не могут знать, какие законы физики действуют внутри объектов с такой плотностью, и поэтому описать характеристики этого места невозможно. В буквальном смысле слова оно является «черной дырой» (или, быть может, «пробелом») в знаниях человечества об окружающем мире.
Излучение Хокинга
Этот тип излучения, открытый известным физиком Стивеном Хокингом, значительно усложняет жизнь современным ученым – ведь из-за этого открытия в теории черных дыр появилось немало трудностей. В классической физике существует понятие вакуума. Этим словом обозначается полная пустота и отсутствие материи. Однако с развитием квантовой физики понятие вакуума было видоизменено. Ученые выяснили, что он заполнен так называемыми виртуальными частицами – под воздействием сильного поля они могут превратиться в реальные. В 1974 году Хокинг выяснил, что подобные превращения могут происходить в сильном гравитационном поле черной дыры – возле ее внешней границы, горизонта событий. Такое рождение является парным – появляется частица и античастица. Как правило, античастица обречена на падение в черную дыру, а частица улетает. В результате ученые наблюдают некоторое излучение вокруг этих космических объектов. Оно и получило название излучения Хокинга.
В ходе этого излучения то вещество, что внутри черной дыры, медленно испаряется. Дыра теряет массу, при этом интенсивность излучения обратно пропорциональна величине квадрата ее массы. Интенсивность излучения Хокинга ничтожно мала по космическим меркам. Если предположить, что существует дыра массой в 10 солнц, и на нее не попадает ни свет, ни какие-либо материальные объекты, то даже в этом случае время ее распада будет чудовищно велико. Жизнь такой дыры будет превосходить все время существования нашей Вселенной на 65 порядков.
Понятие и свойства чёрных дыр
Чёрные дыры обладают очень высокой плотностью и невероятно большой силой гравитации. Даже лучи света не могут вырваться из них. Именно поэтому учёные могут «увидеть» чёрную дыру только благодаря тому действию, которое она оказывает на окружающее пространство. В непосредственной близости от чёрной дыры вещество раскаляется и движется с очень большой скоростью. Это газообразное вещество называют аккреционным диском, который выглядит как плоское светящееся облако. Рентгеновское излучение аккреционного диска учёные наблюдают в рентгеновские телескопы. Также фиксируют огромную скорость движения звёзд по их орбитам, что происходит благодаря большой гравитации невидимого объекта огромной массы. Астрономы выделяют три класса чёрных дыр:
•чёрные дыры, имеющие звёздную массу,
•чёрные дыры с промежуточной массой,
•сверхмассивные чёрные дыры.
Звёздной считают массу от трех до ста солнечных масс. Сверхмассивными называют чёрные дыры, имеющие от сотен тысяч до нескольких миллиардов масс Солнца. Они находятся обычно в центре галактик.
Вторая космическая скорость или скорость убегания – это тот минимум, который необходимо достичь для преодоления гравитационного притяжения и выхода за пределы орбиты данного небесного тела. Для Земли скорость убегания равна одиннадцати километрам в секунду, а для чёрной дыры — это более трёхсот тысяч, вот насколько сильна её гравитация!
Границу чёрной дыры называют горизонтом событий. Объект, попавший внутрь него, уже не может покинуть эту область. Размер горизонта событий пропорционален массе чёрной дыры. Чтобы показать, насколько огромна плотность чёрных дыр, учёные приводят следующие цифры – чёрная дыра с массой, в 10 раз превосходящей солнечную, имела бы, примерно, 60 км в диаметре, а чёрная дыра с массой нашей Земли – всего лишь 2 см. Но это только теоретические расчеты, поскольку чёрных дыр, не достигших трёх солнечных масс, учёными ещё не выявлено. Всё, что входит в область горизонта событий, двигается по направлению к сингулярности. Сингулярность, если сказать упрощенно, — это место, где плотность стремится к бесконечности. Через гравитационную сингулярность нельзя провести входящую в неё геодезическую линию. Для чёрной дыры характерно искривление структуры пространства и времени. Прямая линия, которая в физике представляет собой путь движения света в вакууме, вблизи чёрной дыры становится кривой. Какие физические законы работают рядом с точкой сингулярности и непосредственно в ней, пока неизвестно. Некоторые исследователи, например, говорят о наличии так называемых червоточин, или пространственно-временных туннелей, в чёрных дырах. Но не все учёные согласны признать существование подобных туннелей-червоточин.
Методы обнаружения
Рассмотрим методы, которые астрономы используют для обнаружения черной дыры:
- ЧД возможно зарегистрировать в том случае, когда она притягивает окружающую ее материю, будь то звездное вещество соседней звезды или газовое облако, через которое движется черная дыра. Компьютерное моделирование показывает падение звезды в черную дыру В таком случае видимое вещество начнет стягиваться к массивному объекту, образую вокруг него аккреционный диск. То есть диск быстровращающейся разогретой материи. В некоторых случаях вращающаяся вокруг ЧД материя может плотно перекрывать черную дыру, тем самым визуально образуя огромную светящуюся сферу.
-
Метод гравитационного возмущения позволяет определить наличие ЧД по ее гравитационному влиянию на окружающие тела. К примеру, если траектория движения планеты вокруг некоторой звезды не согласуется с теоретическими подсчетами орбиты этой планеты, а имеет некоторое искажение, можно предположить о наличии массивного объекта вблизи планеты, который влияет на ее траекторию. Данный частный случай упрощен, так как подобные ситуации позволяют обнаружить менее массивные объекты, вроде других планет. Черные дыры же могут искажать траекторию огромных облаков газа.
- Возвращаясь к изменению траектории электромагнитного излучения вблизи черной дыры, следует отметить одно из явлений, которое также позволяет обнаружить ЧД – гравитационное линзирование. Свет, проходящий около границ черной дыры, несколько изменяет свою траекторию, создавая таким образом размытую или искаженную картинку, а иногда даже продублированное изображение космических тел. Таким образом, черная дыра, расположенная на фоне какого-либо скопления, вроде галактики или туманности, дает аномальное изображение этого скопления, что привлекает астрономов и дает повод начать поиски ЧД в этой области небосвода.
Помимо упомянутых выше методов, ученые часто связывают такие объекты как черные дыры и квазары. Квазары – некие скопления космических тел и газа, которые являются одними из самых ярких астрономических объектов во Вселенной. Так как они обладают высокой интенсивностью свечения при относительно малых размерах, есть основания предполагать, что центром этих объектов есть сверхмассивная черная дыра, притягивающая к себе окружающую материю. В силу столь мощного гравитационного притяжения притягиваемая материя настолько разогрета, что интенсивно излучает. Обнаружение подобных объектов обычно сопоставляется с обнаружением черной дыры. Иногда квазары могут излучать в две стороны струи разогретой плазмы – релятивистские струи. Причины возникновения таких струй (джет) не до конца ясны, однако вероятно они вызваны взаимодействием магнитных полей ЧД и аккреционного диска, и не излучаются непосредственной черной дырой.
Джет в галактике M87 бьющий из центра ЧД
Подводя итоги вышесказанного, можно представить себе, как выглядит черная дыра в космосе вблизи: это сферический черный объект, вокруг которого вращается сильно разогретая материя, образуя светящийся аккреционный диск.
Теоретическая история
В зависимости от модели изначальные черные дыры могут иметь начальную массу от 10 -8 кг (так называемые Планки мощь) до более чем тысячи солнечных масс. Однако изначальные черные дыры изначально имели массу меньше, чем10 11 кг не дожили бы до настоящего времени из-за излучения Хокинга , которое вызывает полное испарение за время, намного меньшее, чем возраст Вселенной. Первичные черные дыры небарионны и, как таковые, являются вероятными кандидатами в темную материю . Первичные черные дыры также являются хорошими кандидатами на роль зародышей сверхмассивных черных дыр в центре массивных галактик, а также черных дыр промежуточных масс .
Первозданные черные дыры относятся к классу массивных компактных гало-объектов (МАЧО). Они, естественно, являются хорошими кандидатами на темную материю: они (почти) бесстолкновительные и стабильные (если достаточно массивны), у них нерелятивистские скорости, и они формируются очень рано в истории Вселенной (обычно менее чем через одну секунду после Big Bang ). Тем не менее, критики утверждают, что жесткие ограничения на их численность были установлены на основе различных астрофизических и космологических наблюдений, что исключает их значительный вклад в темную материю в большей части вероятного диапазона масс. Однако новое исследование снова предоставило возможность, согласно которой эти черные дыры будут располагаться в скоплениях с первичной черной дырой с массой 30 солнечных в центре.
В марте 2016 года, через месяц после объявления об обнаружении Advanced LIGO / VIRGO гравитационных волн, излучаемых слиянием двух черных дыр массой 30 солнечных масс (около6 × 10 31 кг ) три группы исследователей независимо друг от друга предположили, что обнаруженные черные дыры имеют изначальное происхождение. Две группы обнаружили, что скорость слияния, полученная с помощью LIGO, согласуется со сценарием, в котором вся темная материя состоит из первичных черных дыр, если значительная их часть каким-то образом сгруппирована в гало, таких как тусклые карликовые галактики или шаровые галактики. кластеры , как и ожидалось в стандартной теории образования космической структуры . Третья группа утверждала, что эти скорости слияния несовместимы со сценарием, основанным на полной темной материи, и что первичные черные дыры могут составлять менее одного процента от общей темной материи. Неожиданно большая масса черных дыр, обнаруженная LIGO, сильно возродила интерес к первичным черным дырам с массами в диапазоне от 1 до 100 масс Солнца. Однако все еще обсуждается, исключается ли этот диапазон другими наблюдениями, такими как отсутствие микролинзирования звезд, анизотропия космического микроволнового фона , размер слабых карликовых галактик и отсутствие корреляции между рентгеновскими лучами и рентгеновскими лучами. радиоисточники в сторону центра Галактики.
В мае 2016 года Александр Кашлинский предположил, что наблюдаемые пространственные корреляции в неразрешенных гамма- и рентгеновских фоновых излучениях могут быть связаны с первичными черными дырами с аналогичными массами, если их количество сопоставимо с количеством темной материи.
В апреле 2019 года было опубликовано исследование, показывающее, что эта гипотеза может оказаться тупиковой. Международная группа исследователей подвергла теорию, выдвинутую покойным Стивеном Хокингом, самому строгому на сегодняшний день, и их результаты исключили возможность того, что первичные черные дыры размером менее одной десятой миллиметра (7 × 10 22 кг) создают вверх по большей части темной материи.
В августе 2019 года было опубликовано исследование, открывающее возможность создания всей темной материи из первичных черных дыр с массой астероидов (3,5 × 10 −17 — 4 × 10 −12 солнечных масс, или 7,0 × 10 13 — 8 × 10 18 кг).
В сентябре 2019 года в отчете Джеймса Анвина и Якуба Шольца была высказана мысль о возможности возникновения первичной черной дыры (ПЧД) с массой 5–15 M ⊕ (земных масс), примерно равной диаметру теннисного мяча , существующей в расширенном поясе Койпера до объяснить орбитальные аномалии, которые теоретически являются результатом 9-й планеты Солнечной системы.
Что станет с Солнцем в дыре
Наше Солнце образовало бы сферу Шварцшильда с радиусом примерно 3 км. Это значит, что если бы удалось поместить наше небесное светило с радиусом 696 млн км в шар с радиусом 1 или 2 км, то воображаемый шар радиусом 3 км и будет представлять сферу Шварцшильда. Поскольку из нее не может вырваться в результате сильной гравитации ни один фотон, мы никогда и не узнали бы о том, что Солнце сдавлено.
Фотоны не могут покинуть пределы сферы Шварцшильда, но проникают они в нее без затруднений.
Это значит, что лучи, попавшие в сферу, полностью ею поглощаются. Это свойство, однако, присуще всем черным телам. По этим двум причинам остатки сверхмассивных звезд называются черными дырами.
Странной судьбой наделены эти небесные тела: от звездных великанов, увидеть которых можно было даже в самых отдаленных галактиках, не остается после коллапса следа. Наиболее драматичные процессы во Вселенной – исчезновение сверхгигантов звезд проходит совсем незаметно и свет Вселенной изменяется.
Звездный сверхгигант полностью исчезает из видимой Вселенной – вот что происходит в черной дыре.
Как обнаружить черную дыру
В конце своей жизни массивные звезды могут превращаться в черные дыры. И на этапе, когда только пытались найти первые черные дыры, возник вопрос: как их можно обнаружить. Первая идея была такой: звезды, особенно массивные, нередко рождаются парами. Одна из таких звезд превращается в черную дыру, и мы перестаем ее видеть. При этом она продолжает существовать. Предполагалось, что мы сможем увидеть вращение соседней звезды вокруг этого невидимого объекта, при помощи вычислений измерить его массу и обнаружить, что в этом месте находится черная дыра.
Сергей Попов рассказывает, что исторически это был первый предложенный способ поиска. С 60-х годов ученые пытались искать их по такому методу, но ничего не обнаружили. Последние пару лет стали появляться возможные кандидаты на звание черных дыр, но ученые пока не уверены, что в паре с обычными звездами находятся именно они.
Визуализация черной дыры
(Фото: NASA)
Если опять обратиться к черной дыре, которая соседствует со звездой, то вещество с обычной звезды может перетекать в дыру. Черная дыра своей гравитацией будет засасывать это вещество. Если представить, что в нее одновременно кинули два камня, они могут столкнуться над горизонтом на скорости почти равной скорости света. При таком столкновении выделится много энергии, которую можно заметить.
Но в звездах не камни, а газ. Когда разные слои газа трутся друг о друга, они нагреваются до миллионов градусов, и это тепло можно увидеть. С помощью такого способа в конце 60-х — начале 70-х годов, когда стали запускать первые рентгеновские детекторы в космос, открыли и первые черные дыры.
Визуализация черной дыры рядом со звездой
(Фото: NASA)
В начале 60-х годов стало ясно, что есть яркие астрономические объекты — квазары. Дословно— «похожий на звезду радиоисточник». Это активные ядра галактик на начальном этапе развития, в центре которых находятся сверхмассивные черные дыры. Обнаружить их можно даже на очень отдаленных расстояниях. В ходе изучения квазаров стало ясно, что это небольшой источник, который находится в центре далекой галактики и при этом испускает много энергии. Попов рассказывает, что когда ученые открывают квазар, они уверены, что там «сидит» сверхмассивная черная дыра. Сейчас это самый массовый способ открытия черных дыр.
Визуализация квазара
(Фото: NASA)
Почти все массивные звезды превращаются в черные дыры, но не все они находятся в двойных системах, или у них нет перетекания. В таком случае дыры ищут другим способом. Сергей рассказывает, что черная дыра сильно искажает пространство-время вокруг себя, но тут важна не столько масса, сколько компактность. Понять это легко, достаточно представить острый предмет. Это предмет с очень маленькой площадью. Если просто ткнуть куда-то пальцем, нельзя проткнуть поверхность, а если с такой же силой надавить на иголку, то проткнется палец, которым на нее давят. Так вот маленькие объекты при той же массе сильнее искривляют пространство-время вокруг себя. Такой эффект называется гравитационным линзированием.
Индустрия 4.0
Как полететь на Луну: самые популярные поисковые запросы на тему космоса
Ученые наблюдают за звездой и вдруг замечают, что ее блеск растет, а потом совершенно симметрично спадает обратно. Со звездой ничего не произошло, но между нами и звездой пролетел массивный объект. И этот массивный объект, искажая пространство-время, собрал световые лучи.
Визуализация черной дыры
(Фото: NASA)
Поэтому кажется, будто возрастает светимость звезды, а на самом деле просто больше ее света было собрано и попало к нам. Звезда с массой десять масс Солнца светила бы очень заметно, ученые бы ее не пропустили. А в таких наблюдениях появляется абсолютно темный объект с массой примерно десять солнечных. Что это может быть? Только черная дыра.
Если есть пара черных дыр, то, сливаясь, они будут порождать гравитационно-волновой всплеск. И в 2015 году впервые были обнаружены такие всплески гравитационного излучения. Это последний на сегодняшний день хороший способ поиска черных дыр.
Визуализация двух черных дыр
(Фото: NASA)
Информационный парадокс черных дыр
Вы наверняка слышали, что черные дыры уничтожают информацию, которая в них попадает. Почему это является такой огромной проблемой для физики, что ученые всеми силами пытаются избавиться от этой нелепой и нелогичной формулировки? Что ж, мир стал довольно сложным. В моем детстве все было проще. Трава была зеленее, газировка вкуснее, а черные дыры были черными. То есть черные дыры сжимали материю и энергию в бесконечно плотные сингулярности, не создавая непреодолимых парадоксов. Это были хорошие дни.
Но им пришел конец. Сегодня черные дыры вмещают все пятьдесят оттенков серого, изгибая законы физики один за другим. Что же такое информационный парадокс черной дыры?
Для начала давайте поговорим об информации. Когда физики говорят «Информация», они имеют в виду конкретное состояние каждой частицы во вселенной: масса, положение, спин, температура и т. д. отпечаток пальца, который уникальным образом идентифицирует каждого, и вероятность того, что эти частицы собираются делать во вселенной. Вы можете взять атомы, раздавить их или сжать вместе, но квантово — волновая функция, которая их описывает, всегда будет сохраняться.
Квантовая физика позволяет вам запускать всю вселенную вперед и назад до тех пор, пока вы обращаете все в своей математике: заряд, четность и время
Это важно. Светлые умы говорят нам, что информация должна жить, несмотря ни на что
Представьте ее в виде энергии. Вы не можете уничтожить энергию: только преобразовать.
Что такое черная дыра? Она образуется, когда крупнейшая звезда с массой в 20 раз превышающей солнечную жестоко коллапсирует и взрывается. Ее плотность материи чрезвычайно высока, скорость убегания превышает скорость света. Особо прикольные имеют перегретый диск аккреции с материей, которая кружится вокруг горизонта событий черной дыры, за пределы которого свет уже не может вырваться никак.
И тут у нас появляется один из самых странных побочных эффектов относительности: замедление времени. Представьте себе часы, падающие в направлении черной дыры, которые засасывает гравитационный колодец. Время будет идти медленнее по мере приближения к черной дыре, пока наконец не замерзнет на краю горизонта событий. Фотоны от часов вытянутся, и цвет часов пройдет через красное смещение. В конце концов, он исчезнет, поскольку фотоны вытянутся за пределы того, что могут обнаружить наши глаза.
Лишь в том случае, если бы вы смотрели на черную дыру миллиарды лет, вы увидели бы все, что она собрала, что застряло внутри, как на липучке. Вы нашли бы и часы, и «Титаник», и теоретически смогли бы определить квантовое состояние каждой отдельной частицы и фотона, который попал в черную дыру. Поскольку потребуется практически бесконечное количество времени, чтобы все испарилось совершенно, все в порядке.
Информация навсегда на поверхности черной дыры сохраняется. Все, что туда попало, определенно погибло, но их информация, их драгоценная квантовая информация, в полном порядке.
В 1975 году Стивен хокинг сбросил на черные дыры бомбу. Он осознал, что у черных дыр есть температура, и с течением огромного периода времени они совершенно испарятся, выпустив массу и энергию обратно во вселенную. Этот процесс был обозначен как излучение хокинга.
Но эта же идея парадокс породила. Информация о том, что попало в черную дыру сохраняется замедлением времени, но сама масса черной дыры испаряется. В конце концов, она совершенно исчезнет, и тогда куда денется информация? Та информация, которая не может быть уничтожена?
Астрономы в шоке. Десятками лет они работают, пытаясь решить этот вопрос. Есть небольшой набор вариантов:
Черные дыры не испаряются вовсе, хокинг ошибся.
Информация в черной дыре каким-то образом утекает вместе с излучением хокинга.
Черная дыра удерживает ее до самого конца, и когда испаряются две последних частицы, вся информация внезапно высвобождается во вселенную.
Информация сжимается в микроскопическое пространство, которое остается после испарения черной дыры.
Черная дыра.
Возможно, физики никогда не смогут выяснить это. Недавно хокинг выдвинул новую идею, которая могла бы разрешить информационный парадокс черной дыры. Он предположил, что есть некий способ, которым излучение хокинга могло бы уносить в себе информацию о новой материи, падающей в черную дыру.
Таким образом, информация обо всем, что падает, сохраняется уходящим излучением, возвращается во вселенную и разрешает парадокс. Но это догадка, поскольку и само излучение хокинга никто не обнаружил. Возможно, мы через много десятков лет узнаем не только то, в правильном направлении мы движемся или нет, но и собственно решение парадокса.
В ситуациях вроде этой мы вспоминаем, как мало знаем о вселенной на самом деле.
Почему Хокинг ошибся по поводу черных дыр?
Согласно недавнему исследованию Стивена Хокинга (Stephen Hawking), создавшего настоящий переполох, некоторые издания объявили о том, что черных дыр нет. Однако, это не совсем то, что утверждал Хокинг. Впрочем уже сейчас понятно, что предположение Хокинга о черных дырах ошибочно, потому что парадокс, который он пытается доказать, уже не парадокс вовсе.
Это все сводится к известному нам парадоксу огненной стены черных дыр. Главной особенностью черной дыры является ее горизонт событий. Горизонт событий черной дыры – точка невозврата при приближении к ней. В общей теории относительности Эйнштейна, горизонт событий представляет собой пространство и время, которые настолько деформированы под воздействием силы тяжести, что их невозможно покинуть. Пересечете горизонт событий — и вы навсегда в ловушке.
Это односторонняя природа горизонта событий уже давняя проблема для понимания гравитационной физики. Например, горизонт событий черной дыры, казалось бы, нарушает законы термодинамики. Один из принципов термодинамики гласит о том, что ничто не должно иметь температуру абсолютного нуля. Даже очень холодные вещи излучают немного тепла, но если черная дыра поглощает свет, то она не выделяет никакого тепла. Таким образом, температура черной дыры равна нулю, что не возможно.
Тогда в 1974 году Стивен Хокинг показал, что черные дыры излучают свет благодаря квантовой механике. В квантовой теории есть пределы тому, что может быть известно об объекте. Например, вы не можете знать точно энергию объекта. Из-за этой неопределенности, энергия системы может колебаться спонтанно, до тех пор, пока ее средняя величина остается постоянной. Хокинг продемонстрировал, что вблизи горизонта событий черной дыры пары частиц могут появиться, когда одна частица оказывается в ловушке внутри горизонта событий (немного снижая массу черной дыры), а другая может избежать этого, в виде излучения (унося немного энергии черной дыры).
В то время как излучение Хокинга решило одну проблему с черными дырами, оно создало еще одну, известную как парадокс огненной стены. Когда квантовые частицы появляются парами, они спутаны, то есть, они связаны в квантовом смысле. Если одна частица захватывается черной дырой, а другая вырывается, тогда спутанность пары нарушается. В квантовой механике можно было бы сказать, что пара частиц появляется в чистом, первоначальном, виде, и горизонт событий, казалось бы, сломал это состояние.
В прошлом году было показано, что если излучение Хокинга в чистом виде, тогда либо оно не может излучать в направлении, требуемом термодинамикой, или это создаст огненную стену частиц высокой энергии вблизи поверхности горизонта событий. Это часто называют парадокс огненной стены, потому что согласно общей теории относительности, если оказаться вблизи горизонта событий черной дыры, ничего необычного не удастся заметить. Основная идея общей теории относительности (принцип эквивалентности) требует, чтобы, если вы свободно падаете к горизонту событий, не должно быть сильной огненной стены частиц высокой энергии. В своей работе Хокинг предложил решение этого парадокса, предположив, что черные дыры не имеют горизонты событий. Вместо этого они имеют кажущиеся горизонты, которые не требуют соответствия огненной стены и термодинамики. Поэтому заявление «черных дыр нет» популярно в прессе.
Но парадокс огненной стены возникает только при излучении Хокинга в чистом виде, и исследование Сабины Хоссенфельдер (Sabine Hossenfelder) показывает, что излучение Хокинга не в чистом виде. В своей статье, Хоссенфельдер показывает, что вместо пары спутанных частиц, излучение Хокинга связано с двумя такими парами. Одна спутанная пара попадает в ловушку черной дыры, в то время как другая убегает. Процесс похож на первоначальное предложение Хокинга, но частицы Хокинга не в чистом виде.
Таким образом, нет никакого парадокса. Черные дыры могут излучать свет таким образом, который согласуется с термодинамикой, и область вблизи горизонта событий не имеет огненной стены, как требует общая теория относительности. В итоге, предложение Хокинга является решением проблемы, которой не существует.
Что внутри?
Отвечая на этот вопрос, ученые озвучивают лишь гипотезы. Чаще всего при описании внутреннего пространства дыры применяется термин «сингулярность». Под ним понимают состояние материи, стремящейся к бесконечности, где известные законы физики не работают. Говоря совсем простыми словами, сингулярность – это абсолютно непонятное место, не имеющее аналогов на Земле.
Ответить на вопрос о том, что внутри рассматриваемого объекта, можно и по-другому: внутренности составляют всё то, что материя поглотила в процессе своего формирования, т. е. нейтроны, образовавшиеся в результате колоссального сжатия, сопровождающего рождение гравитационной ловушки.