Содержание
- Формула связи показателя преломления с электрическими и магнитными свойствами вещества
- Закон преломления
- Закон преломления света
- Оптическая плотность веществ
- Закон отражения света
- В чем заключается явление преломления света
- Влияние показателя преломления на свойства линз
- Изменение траектории движения потока
- Полноценное внутреннее отражение
- Метаматериалы с отрицательным индексом
- Геометрическая оптика
- Проверка общих знаний
- Относительный показатель
- Практическое применение явления полного отражения
- Дифракция света
- По какой формуле можно сосчитать показатель преломления?
Формула связи показателя преломления с электрическими и магнитными свойствами вещества
Учитывая выражения (2) и (4) мы получим:
Уравнение (5) называют формулой Максвелла. Для немагнитных прозрачных веществ выражение (5) преобразуют к виду:
Как известно, показатель преломления ($n$) зависит от длины волны ($\lambda $) света, однако диэлектрическую проницаемость вещества обычно считают величиной постоянной, полученное противоречие говорит об ограниченности классической электромагнитной теории поля. Считая формула Максвелла справедливой необходимо учитывать строение вещества с точки зрения атомной физики и говорить о зависимости $\varepsilon (\lambda )$.
Считая $\varepsilon =const,$ формулу Максвелла применяют для расчетов, которые проводят для газов, имеющих простое химическое строение, в которых проявляется слабая зависимость оптических свойств от частоты, и нет большой дисперсии. Эксперименты показали, что формула Максвелла дает хорошие результаты при ее использовании для жидких углеводородов. Для твердых тел применение формулы (5) дает большие погрешности.
Проблема, связи показателя преломления с частотой света, помогает устранить, например, электронная теория Лоренца. Ученый рассматривал явление дисперсии света как взаимодействие электромагнитных волн с частицами, несущими совершающими вынужденные колебания в переменном поле световой волны. Лоренц вывел формулу, связавшую показатель преломления с длиной световой волны.
Закон преломления
Падающая на плоскую границу волна света отражается от границы раздела и преломляется, проходя из одной среды в другую с определённой силой прозрачной среды. Эта характеристика является показателем преломления, который физики называют коэффициентом преломления.
Показатели преломления и величина угла падения взаимосвязаны. Чем больше этот угол падения, тем больше следует ожидать величину угла преломления.
Формула показателя преломления:
Полное внутреннее отражение происходит из-за превышения угла падения критического значения, при котором падающая волна полностью отражается. Известно, что показатель отражения имеет самые большие значения для полированных зеркальных поверхностей.
Закон преломления света
Суть закона преломления света:
Здесь n1 – показатель преломления в условиях, в которых луч опускается, n2 – показатель преломления в условиях, в которых он преломляется.
Абсолютный показатель – это постоянная величина. Он равняется отношению скорости движения светового потока в вакууме к скорости его движения в среде.
Здесь c – скорость света в вакууме, v – в среде.
Луч, направленный на край двух сред перпендикулярно, не будет преломлен, при прохождении из одной среды в другую.
https://youtube.com/watch?v=E6UbmKts8Gc
Полное отражение света
Когда световое излучение попадает из более уплотненной среды в менее уплотненную, случается полное отражение света. При нем световой поток скользит по поверхности, не преломляясь.
α на рисунке – предельный угол полного внутреннего отражения (угол преломления будет равен 90 гр.). Чаще всего он обозначается как α0.
Принцип Гюйгенса
На этом принципе основана волновая оптика. Принцип Гюйгенса описывает механизм движения волн. К световому излучению его также можно применить. Принцип говорит о том, что когда волна достигает какой-нибудь поверхности, ее точки становятся источниками следующих волн. По такому принципу происходит движение и светового излучения.
Допустим, нам известно положение поверхности волны в данный момент. Чтобы узнать ее положение в любой другой момент, нужно рассматривать все ее точки как источники следующих волн.
Простой пример того, как проходит преломление света в неоднородных условиях.
Точки на краю двух сред порождают новые волны. Огибающая к этим волнам уже не параллельна к разделу условий. Граница раздела следующих условий также породит вторичные волны, и поток отклонится еще. По такому же принципу световая волна будет идти дальше. Из этого рисунка понятно, что излучение уходит в сторону увеличения n.
Оптическая плотность веществ
Свет может проникать через разные вещества, которые характеризуются различными показателями оптической плотности. Как мы уже говорили ранее, используя данный закон можно определить характеристику плотности среды (структуры). Чем более плотной она будет, тем с меньшей скоростью в ней будет распространяться свет. Например, стекло или вода будут более оптически плотными, чем воздух.
Кроме того, что данный параметр является постоянной величиной, он еще и отражает отношение скорости света в двух веществах. Физический смысл можно отобразить в виде следующей формулы:
Данный показатель говорит, каким образом изменяется скорость распространения фотонов при переходе из одного вещества в другое.
Закон отражения света
Отражение – это явление, при котором при падении световых лучей на непрозрачную гладкую поверхность они меняют направление распространения, возвращаясь в прежнюю среду.
АО – падающий луч, ОВ – отраженный луч, СО – перпендикуляр
Угол падения – это угол между падающим лучом и перпендикуляром к отражающей поверхности.
Угол отражения – это угол между отраженным лучом и перпендикуляром к отражающей поверхности.
Законы отражения света
- Лучи падающий и отраженный лежат в одной плоскости с перпендикуляром, восстановленным в точку падения луча к отражающей поверхности.
- Угол отражения равен углу падения. \( \angle\beta=\angle\alpha \), где \( \alpha \) – угол падения, \( \beta \) – угол отражения.
Виды отражения
Зеркальное – это отражение, при котором лучи, падающие на поверхность параллельным пучком, после отражения остаются параллельны.
Рассеянное – это отражение, при котором лучи, падающие на поверхность параллельным пучком, после отражения отклоняются в различных направлениях.
Если луч падает перпендикулярно отражающей поверхности, то угол падения равен нулю, и угол отражения тоже равен нулю. Поэтому луч отражается в обратном направлении.
Важно!
В оптике все углы отсчитываются от перпендикуляра к отражающей поверхности или к границе раздела сред
В чем заключается явление преломления света
С этим феноменом знакомы практически все, так как он широко встречается в повседневной жизни. Например, если смотреть на дно водоема с прозрачной водой, то оно всегда кажется ближе, чем есть на самом деле. Искажение можно наблюдать в аквариумах, этот вариант знаком практически всем. Но чтобы разобраться в вопросе, надо рассмотреть несколько важных аспектов.
Причины преломления
Тут решающее значение имеют характеристики разных сред, через которые проходит световой поток. Их плотность чаще всего различается, поэтому свет распространяется с разной скоростью. Это напрямую влияет и на его свойства.
При прохождении солнечного луча через призму он раскладывается на все цвета спектра.
При переходе из одной среды в другую (в месте их соединения), свет меняет свое направление из-за различий в плотности и других особенностей. Отклонение может быть разным, чем больше разница в характеристиках сред, тем большее искажение образуется в конечном итоге.
Примеры из жизни
Встретить примеры рассматриваемого явления можно практически везде, поэтому каждый может увидеть, как влияет преломление на восприятие предметов. Самые характерные варианты таковы:
- Если поместить ложку или трубочку в стакан с водой, то можно увидеть, как зрительно предмет перестает быть прямым и отклоняется, начиная от границы двух сред. Эта оптическая иллюзия используется в качестве примера чаще всего.
- В жаркую погоду на асфальте часто возникает эффект лужи. Это объясняется тем, что в месте резкого перепада температур (у самой земли) лучи преломляются так, что глаза видят небольшое отражение неба.
-
Миражи также появляются в результате преломления. Тут все на порядок сложнее, но при этом данное явление встречается не только в пустыне, но и в горах и даже в средней полосе. Еще один вариант – когда видны объекты, находящиеся за линией горизонта.
- Принципы преломления используются и во многих предметах, используемых в повседневной жизни: очки, увеличительное стекло, дверные глазки, проекторы и аппараты для показа слайдов, бинокли и многое другое.
- Многие виды научного оборудования работают за счет применения рассматриваемого закона. Сюда относятся микроскопы, телескопы и другие сложные оптические приборы.
Что такое угол преломления
Углом преломления называют угол, который образуется вследствие явления преломления на границе соединения двух прозрачных сред с разными свойствами светопроницаемости. Он определяется от перпендикулярной линии, проведенной к преломляемой плоскости.
Если в стакан налить жидкость с большей плотностью, чем вода, то угол преломления станет больше.
Это явление обусловлено двумя законами – сохранения энергии и сохранения импульса. С изменением свойств среды скорость волны неизбежно меняется, но при этом ее частота остается одинаковой.
От чего зависит угол преломления
Показатель может меняться и в первую очередь зависит от характеристики двух сред, через которые проходит свет. Чем больше разница между ними, тем значимее зрительное отклонение.
Также угол зависит от длины излучаемых волн. С изменением этого показателя меняется и отклонение. В некоторых средах большое влияние оказывает и частота электромагнитных волн, но этот вариант встречается далеко не всегда.
Влияние показателя преломления на свойства линз
Для пользователей очков очень большое значение имеет их внешний вид, обусловленный толщиной линз, а также их вес. Толщина линз зависит от ряда параметров: характеристик самих линз (оптической силы, дизайна); размера и формы оправы, а также ее типа (ободковой или безободковой конструкции); децентрации линз; показателя преломления материала, из которого они изготовлены; их толщины по центру или краю.
Увеличение показателя преломления материала очковых линз приводит к уменьшению их толщины и объема, что, как правило, ведет к снижению веса. Разница в толщине высокопреломляющих очковых линз и очковых линз из стандартных материалов зависит от оптической силы очковой линзы, и она особенно существенна при больших значениях рефракции – от 4,0 дптр и выше. В ряде случаев увеличение n может привести к уменьшению толщины и веса очковой линзы на 30 % и даже больше. Однако высокопреломляющие материалы широко используются и при меньших значениях оптической силы, так как многие пользователи хотят иметь максимально легкие и тонкие очковые линзы. Следует также учитывать, что увеличение показателя преломления способствует снижению кривизны поверхности, и это делает высокодиоптрийные линзы менее выпуклыми, а значит, очки с ними – более эстетически привлекательными.
Тем не менее необходимо принимать во внимание такие особенности оптических материалов с высокими значениями показателя преломления, как большие потери на отражение и хроматическая аберрация. Более высокий показатель преломления материала способствует уменьшению его светопропускания и увеличению количества отраженного света: так, у материала с n = 1,498 отражение от одной поверхности составит 3,97 %, а у материала с n = 1,7 – уже 6,72 %
Суммарные потери на отражение от обеих поверхностей составят 7,79 и 12,99 % соответственно. Устранить эту проблему позволяет нанесение качественных просветляющих покрытий, благодаря чему суммарные потери на отражение от обеих поверхностей уменьшаются до 1 %.
Хроматическая аберрация обусловлена зависимостью показателя преломления материала от длины волны проходящего через нее излучения (то есть дисперсией света). На практике хроматическая аберрация приводит к появлению окрашенной каймы вокруг изображения высококонтрастного предмета. Количественной характеристикой дисперсии и вероятности появления хроматической аберрации является число Аббе (v). Оно рассчитывается по формуле v = (ne – 1)/(nf – nc), в которой используются показатели преломления для трех значений длины волны: голубой – f, зеленой – е и красной – с.
Число Аббе для очковых линз изменяется от 30 до 58, причем чем оно больше, тем «комфортнее» линзы для глаз. С увеличением показателя преломления оно снижается. Для материалов со стандартным значением показателя преломления 1,5 число Аббе обычно составляет от 50 до 58, для оптических материалов со значениями показателя преломления 1,6–1,7 – от 40 до 30.
При отклонении зрачка от оптического центра очковых линз возникает хроматическая аберрация, но последние исследования показывают, что с этим явлением следует считаться начиная с оптической силы ±7,0 дптр. Решить проблему хроматической аберрации помогут оправы с меньшими геометрическими проемами. Если же клиент ранее испытывал проблемы с радужным ореолом вокруг изображений и предпочитает оправу большого размера, то лучше выбрать материалы со средними значениями показателя преломления, имеющими несколько более высокое число Аббе, равное 38 ± 43.
На российском оптическом рынке представлены очковые линзы из разнообразных материалов с высоким и сверхвысоким значениями показателя преломления, благодаря чему можно изготовить более тонкие, легкие и комфортные очки самым «сложным» клиентам. Мы попросили представителей оптических компаний, которые производят очковые линзы, ответить на следующие вопросы:
1. Какие материалы с высоким значением показателя преломления имеются в вашем ассортименте?
2. Какие материалы со сверхвысоким значением показателя преломления есть в ассортименте?
3. Представлены ли в предлагаемом ассортименте высокопреломляющие фотохромные линзы?
4. Начиная с какой рефракции пациентам можно рекомендовать линзы из материала с высоким значением показателя преломления, 1,64 ≤ n < 1,74, а кому следует предлагать линзы из материалов, имеющих сверхвысокий показатель преломления – 1,74 и выше?
5. Если можно, приведите для сравнения характеристики (вес, толщину по центру или краю) линз одинаковой рефракции и диаметра, выполненных из обычных материалов с показателем преломления 1,5 и линз из материалов с высоким показателем преломления.
Ниже представлены ответы компаний.
Изменение траектории движения потока
Когда луч опускается на раздел двух сред (возьмем воду и стекло), одна его часть отражается от стекла, а другая проникает внутрь, но в стекле излучение преломляется.
Закон отражения и преломления света выглядит так:
Дадим определение понятиям, без которых понимание сути законов невозможно.
Отражение света – это перемена траектории движения светового излучения при попадании на край двух сред, после чего излучение остается и продолжает распространение в первой среде. Преломление света – это перемена курса светового излучения после перехода из одних условий в другие.
В основе волновой оптики лежит принцип Ферма. Он гласит, что световое излучение выбирает путь, на преодоление которого требуется минимум времени. Это утверждение определяет законы волновой оптики, представленные ниже.
Полноценное внутреннее отражение
Завершая наш небольшой экскурс, еще необходимо рассмотреть такой эффект, как полноценное внутреннее отражение.
Явление полноценного отображения
Для появления данного эффекта необходимо увеличение угла падения светового потока в момент его перехода из более плотного в менее плотную среду в границе раздела между веществами. В ситуации, когда данный параметр будет превосходить определенное предельное значение, тогда фотоны, падающие на границу этого раздела будут полностью отражаться. Собственно это и будет наше искомое явление. Без него невозможно было сделать волоконную оптику.
Метаматериалы с отрицательным индексом
В 60 годах 20 века появилась гипотеза о возможном существовании метаматериалов с отрицательной рефракцией. Метаматериалами называются вещества, которые благодаря искусственно созданной периодической структуре обладают свойствами, нехарактерными для обычных.
В начале 21 века их существование считается практически доказанным, многие ученые публикуют экспериментальные данные о получении подобных образцов. Считается, что они будут обладать такими свойствами:
- В них будут отличаться направления фазовой и групповой скорости.
- Вероятно преодоление дифракционного предела — минимального значения размера пятна, которое можно получить при фокусировке электромагнитных волн.
Геометрическая оптика
Оптика — огромный раздел в физике, включающий в себя изучение происхождения лучей и контакт полос света с веществами различной природы. Часть оптики, рассматривающая принципы направления солнечного света в гомогенной среде, называется лучевой. Чтобы тщательно разобраться в закономерностях распределения полос, необходимо определить предмет изучения геометрической оптики.
Термин «свет»
Предметы, которые доступны человеческому глазу без дополнительных оптических приборов, находятся в узком диапазоне видимого света. Близкие по частоте длины волн принадлежат ультрафиолетовому и инфракрасному излучениям. Например, семейство пчелиных распознают колебания ультрафиолетовых волн.
Световые лучи имеют различное происхождение. Тепловые материалы достигают температуры 1000−1600 градусов Цельсия, а также способны изменять цвет в зависимости от термического градиента. Источники люминесцентного свечения (экраны смартфонов, некоторые семейства насекомых, газоразрядные лампы) выделяют «холодный свет», поэтому пользуются большим спросом в быту.
Потоки обладают отражательными и преломляющими способностями. В повседневной жизни человек непременно сталкивается с доказательствами законов лучевой оптики. Самые популярные примеры:
- свойство водоемов искажать солнечные потоки;
- получение бликов на металлической поверхности с помощью портативных генераторов;
- освещение дорожного пути фарами автомобилей;
- изменение формы предметов, погруженных в емкости с водой;
- построение изображений с помощью зеркал.
Принципы распространения лучей
Изучение формулировок законов, связанных с перемещением света в пространстве, начинают ещё в 10−11-м классе. Учителя физики используют для наглядных примеров стеклянную емкость с водой и портативный генератор. Направляя луч лазера через призму, ученики убедятся в том, что пучки перемещаются прямолинейно.
В геометрической оптике выделяют четыре главных правила перемещения световых полос:
- Явление распределения света — в гомогенной среде лучи распространяются прямолинейно. Ученый, раскрывший законы распространения света, — Евклид, который жил в Древней Греции в III веке до нашей эры.
- Правило отражения световых полос — нисходящий и отраженный лучи находятся в единой плоской поверхности, называемой поверхностью падения. Угол, образованный нисходящей линией и серединным отрезком, равен величине угла, созданным отраженным полосой и серединным отрезком. В физических формулах значение углов обозначают греческими буквами γ и α.
- Закон преломления света в физике — нисходящий и искаженный лучи располагаются в единой плоскости. Результатом искажения световых полос является деформация формы или размеров различных предметов.
- Явление независимости солнечных потоков — это действие, которое осуществляется одним из пучков, не оказывает влияния на оставшиеся лучи. Доказательством закона служит разбиение полос на единичные линии света благодаря специальным чертежам.
Проверка общих знаний
Задачи на законы с решением.
№ 1. Световой поток опускается на плоский раздел двух сред. Между падающим излучением и перпендикуляром, проведенным к точке падения 50 гр. Между отраженным и преломленным лучом 100 гр. Чему равен угол светопреломления?
Решение.
- Отраженный угол тоже будет равняться 50 гр. Пусть угол светопреломления равен X. Если мы проведем перпендикуляр в точку падения луча, то получим:
- X + 50 + 100 = 180
- X = 180 – 100 – 50
- X = 30.
Ответ: 30 гр.
№ 2. Угол падения равняется 30 гр., n = 1,6. Найдите угол светопреломления.
Решение.
- Нам известна формула, действующая для закона преломления света: sin a / sin b = n.
- Мы знаем величину «а», sin 30 = 0,5.
- Исходя из этого, получаем:
- sin b = 0,5 / 1,6 = 0,3125.
- Осталось вычислить значение «b» по калькулятору.
Ответ: 18,2 гр.
№ 3. Угол падения равняется 30 гр. А угол преломления – 140 гр. В какой среде луч был сначала: с большей плотностью или с меньшей?
Решение.
- Сначала нужно узнать, под каким углом происходит преломление света. Делаем это по принципу из 1-й задачи.
- X = 180 – (140-30) = 70.
- Угол преломления получается больше. Значит, 1-я среда была более плотной.
Ответ: сначала луч распространялся в более плотной среде.
№ 4. Луч опускается из воздуха на прозрачный пластик. Угол падения – 50 гр., светопреломления – 25 гр. Каково значение показателя преломления пластика относительно воздуха?
Решение.
- Нам известно, что sin пад / sin прел = n.
- sin 50 / sin 25 = n
- 0,76 / 0,42 = 1,8.
Ответ: 1,8.
№ 5. Угол между плоскостью и падающим лучом равен углу между падающим и отраженным лучом. Чему равен угол падения?
Решение.
- Пусть угол падения равен X. Угол между падающим лучом и поверхностью зеркала + X = 90 гр.
- Таким образом, мы получаем:
- X = 90 – 2X
- 3X = 90
- X = 30.
Ответ: 30 гр.
Относительный показатель
В прикладных задачах чаще всего речь идет о распространении света из одной среды в другую. В этом случае вводится другое понятие — относительный показатель рефракции. Его получают из отношения этой характеристики для двух сред.
Формула показателя преломления может быть выражена и через фазовую скорость света в веществах: n12 = v1 / v2 = n2 / n1 где:
- n12 — относительный показатель рефракции;
- n1 — абсолютный для первого вещества, v1 — фазовая скорость электромагнитного излучения в первом веществе;
- n2 — абсолютный для второго вещества, v2 — соответствующая фазовая скорость света.
Для монохроматических волн (когда длина волны намного больше, чем расстояние между молекулами в среде) справедливо отношение: n = sin α / sin β, где:
- sin α — синус угла падения;
- sin β — синус угла отражения;
- n — показатель преломления вещества, в котором распространятся преломленный свет, относительно среды, в которой распространяется падающая волна.
Этот закон был экспериментально выведен В. Снеллиусом в 1621 г.
Практическое применение явления полного отражения
Феномен полного внутреннего отражения широко используется во многих оптических устройствах. Одним из таких устройств является волоконный световод – тонкие, изогнутые случайным образом, нити из оптически прозрачного материала, внутри которых свет, попавший на торец, может распространяться на огромные расстояния. Данное изобретение стало возможным только благодаря правильному применению феномена полного внутреннего отражения от боковых поверхностей (рис 3.1.3).
Определение 12
Волоконная оптика – это научно-техническое направление, основывающееся на разработке и использовании оптических световодов.
Рисунок 3.1.3. Распространение света в волоконном световоде. При сильном изгибе волокна закон полного внутреннего отражения нарушается, и свет частично выходит из волокна через боковую поверхность.
Рисунок 3.1.4.Модель отражения и преломления света.
Всё ещё сложно?
Наши эксперты помогут разобраться
Все услуги
Решение задач
от 1 дня / от 150 р.
Курсовая работа
от 5 дней / от 1800 р.
Реферат
от 1 дня / от 700 р.
Дифракция света
Дифракция света – это явление отклонения волны от прямолинейного распространения при прохождении через малые отверстия и огибании волной малых препятствий.
Наилучшее условие для наблюдения дифракции создается, когда размеры отверстий или препятствий – порядка длины волны. Чтобы определить распределение интенсивности световой волны, распространяющейся в среде с неоднородностями, используют принцип Гюйгенса–Френеля.
Принцип Гюйгенса–Френеля
Каждая точка фронта волны является источником вторичных волн, которые интерферируют между собой. Поверхность, касательная ко всем вторичным волнам, представляет новое положение фронта волны в следующий момент времени.
Все вторичные источники, расположенные на поверхности фронта волны, когерентны между собой, поэтому амплитуда и фаза волны в любой точке пространства – это результат интерференции волн, излучаемых вторичными источниками.
По какой формуле можно сосчитать показатель преломления?
Если принять угол падения за «альфа», а угол преломления обозначить «бэта», то формула абсолютного значения коэффициента преломления выглядит так: n = sin α/sin β. В англоязычной литературе часто можно встретить другое обозначение. Когда угол падения оказывается i, а преломления — r.
Существует еще другая формула того, как можно вычислить показатель преломления света в стекле и прочих прозрачных средах. Она связана со скоростью света в вакууме и ею же, но уже в рассматриваемом веществе.
Тогда она выглядит так: n = c/νλ. Здесь с — скорость света в вакууме, ν — его скорость в прозрачной среде, а λ — длина волны.