Фотография черной дыры: совсем не фотография и не совсем черной дыры

Объекты наблюдения — их масса и удаленность от Земли

Итак, перед дуэтным проектом GMVA и EHT предстали следующие объекты наблюдения. Первая — сверхмассивная черная дыра, расположенная в галактике M87 и удаленная от нашей планеты на расстояние 50 млн. световых лет. Данная черная дыра признана самой массивной из всех известных человечеству — 6 млрд. солнечных масс. Вторая — сверхмассивная черная дыра, расположенная в центре нашей галактики координата которой связана с радиоисточником Стрелец A (сокр. SGR A). Удаление от планеты Земля составляет 26 тыс. световых лет, а ее сверхмассивность — 4,3 млн. солнечных масс. Объекты наблюдения имеют существенное отличие как в удаленности от Земли, так и в их массах относительно Солнца. Расстояние черной дыры в галактике M87 превышает в 2000 раз черную дыру SGR A.

Космическая обсерватория «Спектр-УФ»

Международный проект космической обсерватории «Спектр-УФ» будет исследовать Вселенную в ультрафиолетовом и видимом диапазонах электромагнитного спектра с высоким угловым разрешением, а также регистрировать гамма-излучение в энергетическом диапазоне от 10 КэВ до 10 МэВ. Основную работу по проекту ведут Россия и Испания.

«Спектр-УФ»

(Фото: WSO-UV)

Космический телескоп с зеркалом диаметром 1,7 м оснастят спектрографами высокого и низкого разрешения, чтобы получать спектры высокого разрешения, и камерами для построения высококачественных изображений в ультрафиолетовом диапазоне. Он сможет конкурировать с телескопом «Хаббл».

«Спектр-УФ» будет заниматься не поиском планет, но изучит физико-химический состав планетных атмосфер в Солнечной системе и за ее пределами, физические и химические свойства межзвездного и околозвездного вещества (газа и пылевых частиц), природу активных галактических ядер, химическую эволюцию галактик. Важная задача «Спектра-УФ» — поиск скрытого вещества, то есть газа и пыли, трудноразличимых для уже существующих телескопов.

Сроки старта миссии «Спектр-УФ» несколько раз переносились. Ожидается, что обсерватория начнет работу осенью 2025 года. Запуск запланирован с космодрома «Восточный».

Методы обнаружения

Рассмотрим методы, которые астрономы используют для обнаружения черной дыры:

  • ЧД возможно зарегистрировать в том случае, когда она притягивает окружающую ее материю, будь то звездное вещество соседней звезды или газовое облако, через которое движется черная дыра. Компьютерное моделирование показывает падение звезды в черную дыру В таком случае видимое вещество начнет стягиваться к массивному объекту, образую вокруг него аккреционный диск. То есть диск быстровращающейся разогретой материи. В некоторых случаях вращающаяся вокруг ЧД материя может плотно перекрывать черную дыру, тем самым визуально образуя огромную светящуюся сферу.
  • Метод гравитационного возмущения позволяет определить наличие ЧД по ее гравитационному влиянию на окружающие тела. К примеру, если траектория движения планеты вокруг некоторой звезды не согласуется с теоретическими подсчетами орбиты этой планеты, а имеет некоторое искажение, можно предположить о наличии массивного объекта вблизи планеты, который влияет на ее траекторию. Данный частный случай упрощен, так как подобные ситуации позволяют обнаружить менее массивные объекты, вроде других планет. Черные дыры же могут искажать траекторию огромных облаков газа.

  • Возвращаясь к изменению траектории электромагнитного излучения вблизи черной дыры, следует отметить одно из явлений, которое также позволяет обнаружить ЧД – гравитационное линзирование. Свет, проходящий около границ черной дыры, несколько изменяет свою траекторию, создавая таким образом размытую или искаженную картинку, а иногда даже продублированное изображение космических тел. Таким образом, черная дыра, расположенная на фоне какого-либо скопления, вроде галактики или туманности, дает аномальное изображение этого скопления, что привлекает астрономов и дает повод начать поиски ЧД в этой области небосвода.

Помимо упомянутых выше методов, ученые часто связывают такие объекты как черные дыры и квазары. Квазары – некие скопления космических тел и газа, которые являются одними из самых ярких астрономических объектов во Вселенной. Так как они обладают высокой интенсивностью свечения при относительно малых размерах, есть основания предполагать, что центром этих объектов есть сверхмассивная черная дыра, притягивающая к себе окружающую материю. В силу столь мощного гравитационного притяжения притягиваемая материя настолько разогрета, что интенсивно излучает. Обнаружение подобных объектов обычно сопоставляется с обнаружением черной дыры. Иногда квазары могут излучать в две стороны струи разогретой плазмы – релятивистские струи. Причины возникновения таких струй (джет) не до конца ясны, однако вероятно они вызваны взаимодействием магнитных полей ЧД и аккреционного диска, и не излучаются непосредственной черной дырой.

Джет в галактике M87 бьющий из центра ЧД

Подводя итоги вышесказанного, можно представить себе, как выглядит черная дыра в космосе вблизи: это сферический черный объект, вокруг которого вращается сильно разогретая материя, образуя светящийся аккреционный диск.

Информационный парадокс черных дыр

Вы наверняка слышали, что черные дыры уничтожают информацию, которая в них попадает. Почему это является такой огромной проблемой для физики, что ученые всеми силами пытаются избавиться от этой нелепой и нелогичной формулировки? Что ж, мир стал довольно сложным. В моем детстве все было проще. Трава была зеленее, газировка вкуснее, а черные дыры были черными. То есть черные дыры сжимали материю и энергию в бесконечно плотные сингулярности, не создавая непреодолимых парадоксов. Это были хорошие дни.

Но им пришел конец. Сегодня черные дыры вмещают все пятьдесят оттенков серого, изгибая законы физики один за другим. Что же такое информационный парадокс черной дыры?

Для начала давайте поговорим об информации. Когда физики говорят «Информация», они имеют в виду конкретное состояние каждой частицы во вселенной: масса, положение, спин, температура и т. д. отпечаток пальца, который уникальным образом идентифицирует каждого, и вероятность того, что эти частицы собираются делать во вселенной. Вы можете взять атомы, раздавить их или сжать вместе, но квантово — волновая функция, которая их описывает, всегда будет сохраняться.

Квантовая физика позволяет вам запускать всю вселенную вперед и назад до тех пор, пока вы обращаете все в своей математике: заряд, четность и время

Это важно. Светлые умы говорят нам, что информация должна жить, несмотря ни на что

Представьте ее в виде энергии. Вы не можете уничтожить энергию: только преобразовать.

Что такое черная дыра? Она образуется, когда крупнейшая звезда с массой в 20 раз превышающей солнечную жестоко коллапсирует и взрывается. Ее плотность материи чрезвычайно высока, скорость убегания превышает скорость света. Особо прикольные имеют перегретый диск аккреции с материей, которая кружится вокруг горизонта событий черной дыры, за пределы которого свет уже не может вырваться никак.

И тут у нас появляется один из самых странных побочных эффектов относительности: замедление времени. Представьте себе часы, падающие в направлении черной дыры, которые засасывает гравитационный колодец. Время будет идти медленнее по мере приближения к черной дыре, пока наконец не замерзнет на краю горизонта событий. Фотоны от часов вытянутся, и цвет часов пройдет через красное смещение. В конце концов, он исчезнет, поскольку фотоны вытянутся за пределы того, что могут обнаружить наши глаза.

Лишь в том случае, если бы вы смотрели на черную дыру миллиарды лет, вы увидели бы все, что она собрала, что застряло внутри, как на липучке. Вы нашли бы и часы, и «Титаник», и теоретически смогли бы определить квантовое состояние каждой отдельной частицы и фотона, который попал в черную дыру. Поскольку потребуется практически бесконечное количество времени, чтобы все испарилось совершенно, все в порядке.

Информация навсегда на поверхности черной дыры сохраняется. Все, что туда попало, определенно погибло, но их информация, их драгоценная квантовая информация, в полном порядке.

В 1975 году Стивен хокинг сбросил на черные дыры бомбу. Он осознал, что у черных дыр есть температура, и с течением огромного периода времени они совершенно испарятся, выпустив массу и энергию обратно во вселенную. Этот процесс был обозначен как излучение хокинга.

Но эта же идея парадокс породила. Информация о том, что попало в черную дыру сохраняется замедлением времени, но сама масса черной дыры испаряется. В конце концов, она совершенно исчезнет, и тогда куда денется информация? Та информация, которая не может быть уничтожена?

Астрономы в шоке. Десятками лет они работают, пытаясь решить этот вопрос. Есть небольшой набор вариантов:

Черные дыры не испаряются вовсе, хокинг ошибся.
Информация в черной дыре каким-то образом утекает вместе с излучением хокинга.
Черная дыра удерживает ее до самого конца, и когда испаряются две последних частицы, вся информация внезапно высвобождается во вселенную.
Информация сжимается в микроскопическое пространство, которое остается после испарения черной дыры.
Черная дыра.

Возможно, физики никогда не смогут выяснить это. Недавно хокинг выдвинул новую идею, которая могла бы разрешить информационный парадокс черной дыры. Он предположил, что есть некий способ, которым излучение хокинга могло бы уносить в себе информацию о новой материи, падающей в черную дыру.

Таким образом, информация обо всем, что падает, сохраняется уходящим излучением, возвращается во вселенную и разрешает парадокс. Но это догадка, поскольку и само излучение хокинга никто не обнаружил. Возможно, мы через много десятков лет узнаем не только то, в правильном направлении мы движемся или нет, но и собственно решение парадокса.

В ситуациях вроде этой мы вспоминаем, как мало знаем о вселенной на самом деле.

Почему Хокинг ошибся по поводу черных дыр?

Согласно недавнему исследованию Стивена Хокинга (Stephen Hawking), создавшего настоящий переполох, некоторые издания объявили о том, что черных дыр нет. Однако, это не совсем то, что утверждал Хокинг. Впрочем уже сейчас понятно, что предположение Хокинга о черных дырах ошибочно, потому что парадокс, который он пытается доказать, уже не парадокс вовсе.

Это все сводится к известному нам парадоксу огненной стены черных дыр. Главной особенностью черной дыры является ее горизонт событий. Горизонт событий черной дыры – точка невозврата при приближении к ней. В общей теории относительности Эйнштейна, горизонт событий представляет собой пространство и время, которые настолько деформированы под воздействием силы тяжести, что их невозможно покинуть. Пересечете горизонт событий — и вы навсегда в ловушке.

Это односторонняя природа горизонта событий уже давняя проблема для понимания гравитационной физики. Например, горизонт событий черной дыры, казалось бы, нарушает законы термодинамики. Один из принципов термодинамики гласит о том, что ничто не должно иметь температуру абсолютного нуля. Даже очень холодные вещи излучают немного тепла, но если черная дыра поглощает свет, то она не выделяет никакого тепла. Таким образом, температура черной дыры равна нулю, что не возможно.

Тогда в 1974 году Стивен Хокинг показал, что черные дыры излучают свет благодаря квантовой механике. В квантовой теории есть пределы тому, что может быть известно об объекте. Например, вы не можете знать точно энергию объекта. Из-за этой неопределенности, энергия системы может колебаться спонтанно, до тех пор, пока ее средняя величина остается постоянной. Хокинг продемонстрировал, что вблизи горизонта событий черной дыры пары частиц могут появиться, когда одна частица оказывается в ловушке внутри горизонта событий (немного снижая массу черной дыры), а другая может избежать этого, в виде излучения (унося немного энергии черной дыры).

В то время как излучение Хокинга решило одну проблему с черными дырами, оно создало еще одну, известную как парадокс огненной стены. Когда квантовые частицы появляются парами, они спутаны, то есть, они связаны в квантовом смысле. Если одна частица захватывается черной дырой, а другая вырывается, тогда спутанность пары нарушается. В квантовой механике можно было бы сказать, что пара частиц появляется в чистом, первоначальном, виде, и горизонт событий, казалось бы, сломал это состояние.

В прошлом году было показано, что если излучение Хокинга в чистом виде, тогда либо оно не может излучать в направлении, требуемом термодинамикой, или это создаст огненную стену частиц высокой энергии вблизи поверхности горизонта событий. Это часто называют парадокс огненной стены, потому что согласно общей теории относительности, если оказаться вблизи горизонта событий черной дыры, ничего необычного не удастся заметить. Основная идея общей теории относительности (принцип эквивалентности) требует, чтобы, если вы свободно падаете к горизонту событий, не должно быть сильной огненной стены частиц высокой энергии. В своей работе Хокинг предложил решение этого парадокса, предположив, что черные дыры не имеют горизонты событий. Вместо этого они имеют кажущиеся горизонты, которые не требуют соответствия огненной стены и термодинамики. Поэтому заявление «черных дыр нет» популярно в прессе.

Но парадокс огненной стены возникает только при излучении Хокинга в чистом виде, и исследование  Сабины Хоссенфельдер (Sabine Hossenfelder) показывает, что излучение Хокинга не в чистом виде. В своей статье, Хоссенфельдер показывает, что вместо пары спутанных частиц, излучение Хокинга связано с двумя такими парами. Одна спутанная пара попадает в ловушку черной дыры, в то время как другая убегает. Процесс похож на первоначальное предложение Хокинга, но частицы Хокинга не в чистом виде.

Таким образом, нет никакого парадокса. Черные дыры могут излучать свет таким образом, который согласуется с термодинамикой, и область вблизи горизонта событий не имеет огненной стены, как требует общая теория относительности. В итоге, предложение Хокинга является решением проблемы, которой не существует.

Что такое черная дыра

Начнем с теории. Мы знаем, что объекту, например человеку или ракете, для того чтобы покинуть планету Земля и улететь, скажем, на Марс, нужно стартовать с поверхности со второй космической скоростью, которую очень легко посчитать по формуле . То есть все, что нам нужно знать для расчетов, это массу () и радиус объекта (), не забудем уточнить в справочнике и величину гравитационной постоянной (). Для Земли вторая космическая скорость равна 11,2 км/с.

Ученые уже сто лет пытаются проверить общую теорию относительности Эйнштейна и, в частности, постулаты, лежащие в ее основе. Один из них, который знают абсолютно все, это постулат о скорости света, согласно которому скорость света в вакууме — это максимальная скорость, которую можно достичь в нашей Вселенной. Так что, если у вас есть объект, достаточно массивный и достаточно компактный, он будет черной дырой. Почему черной? Потому что, напоминаю, с него ничего не может улететь, в том числе свет, который в норме показал бы черную дыру во всей красе.

Чтобы узнать размер черной дыры, можно использовать формулу второй космической скорости, заменив V2 на c2 (скорость света в квадрате). Размер черной дыры определяет горизонт событий. Он находится на расстоянии от центра, где вторая космическая скорость равна скорости света, — это расстояние называется гравитационным радиусом, или радиусом Шварцшильда, и вычисляется по формуле .

Чтобы вы представили себе, насколько это большие объекты, давайте сделаем черную дыру из чего-то знакомого, например из Земли. Если мы сожмем Землю, гравитационный радиус для черной дыры, которую мы из нее сделали, будет равен 9 миллиметрам. Если мы сожмем Солнце, сделав из него черную дыру, черная дыра с массой как наше Солнце будет иметь диаметр 6 километров. Под этими тремя километрами гравитационного радиуса ничего нельзя будет увидеть.

Ученые считают, что массивные черные дыры находятся в центрах других далеких галактик, а также в центре нашей Галактики. Вокруг центра активной галактики располагается диск из пыли и газа, и из внутренних областей этого диска вещество «падает» на черную дыру, в центр. При этом около 10% этого вещества выбрасывается наружу в виде узких горячих джетов. Вместе с веществом на центральную сверхмассивную черную дыру также «падает» и магнитное поле, которое накапливается в «пружину». Электромагнитная пружина в состоянии вытолкнуть наружу материю и даже ускорить ее до скоростей, очень близких к скорости света. Из этих разогнанных струй астрономы могут наблюдать излучение электронов.

Существуют ли черные дыры?

Очевидно, все это волнение было бы оправдано только в том случае, если бы черные дыры реально существовали в этой Вселенной. Так существуют ли они?

В прошлом столетии убедительно доказали, что некоторые двойные звезды с интенсивным рентгеновским излучением на самом деле являются звездами, коллапсировавшими в черные дыры.

Более того, в центрах галактик мы часто находим доказательства огромных, темных концентраций массы. Это могут быть сверхмассивные версии черных дыр, вероятно, образованных в процессе слияния множества звезд и газовых облаков, которые погрузились в центр галактики.

Доказательства убедительные, но косвенные. Гравитационные волны позволили нам хотя бы «услышать» слияние черных дыр, но сигнатура горизонта событий все еще неуловима и мы никогда не «видели» черных дыр до сих пор — они просто слишком малы, слишком далеки и, в большинстве случаев, слишком черные.

Типы Чёрных дыр

До сих пор астрономы выделяли три типа черных дыр: звездные черные дыры, сверхмассивные черные дыры и промежуточные черные дыры.

Звездные чёрные дыры

Когда звезда сжигает остатки своего топлива она может сжаться. Для более мелких звезд (которые примерно в три раза превышают массу Солнца) новое ядро станет нейтронной звездой или белым карликом. Но когда большая звезда коллапсирует, она продолжает сжиматься и создает звездную черную дыру .

Черные дыры, образованные коллапсом отдельных звезд, относительно невелики, но имеют очень большую плотность. Один из таких объектов содержит более чем в три раза больше массы Солнца. Это приводит к сумасшедшему количеству гравитационной силы, притягивающей объекты вокруг чёрной дыры. Затем звездные черные дыры поглощают пыль и газ из окружающих их галактик, что позволяет им расти в размерах.

Согласно данным Гарвард-Смитсоновского центра астрофизики, — Млечный Путь содержит несколько сотен миллионов звездных черных дыр.

Сверхмассивные черные дыры

Маленькие черные дыры населяют бесконечную вселенную, но их родственники, — сверхмассивные черные дыры, — доминируют над ними. Эти огромные черные дыры в миллионы или даже миллиарды раз массивнее Солнца, но примерно одинакового размера в диаметре. Считается, что такие черные дыры лежат в центре почти каждой галактики, включая Млечный Путь.

Возникновение:

Ученые не уверены, как возникают такие большие черные дыры. Как только эти гиганты сформировались, они собирают массу из пыли и газа вокруг себя, материала, который в изобилии находится в центре галактик, что позволяет им расти до еще более огромных размеров.

  • Сверхмассивные черные дыры могут быть результатом слияния сотен или тысяч крошечных черных дыр. 
  • Большие газовые облака также могут быть причастны к формированию сверхмассивной дыры, — схлопываясь вместе, они быстро наращивают массу. 
  • Третий вариант — это коллапс звездного скопления, когда все звезды падают вместе. 
  • В-четвертых, сверхмассивные черные дыры могут возникать из больших скоплений темной материи. Это вещество, которое мы можем наблюдать через его гравитационное воздействие на другие объекты; однако мы не знаем, из чего состоит темная материя, потому что она не испускает свет и не может быть непосредственно наблюдаема.

Промежуточные черные дыры

Ученые когда-то думали, что черные дыры бывают только малых и больших размеров, но недавние исследования показали возможность существования средних или промежуточных черных дыр (IMBHs). Такие тела могут образовываться, когда звезды в скоплении сталкиваются в цепной реакции. Некоторые из этих промежуточных черных дыр, образующихся в одной и той же области, могут затем в конечном итоге столкнуться в центре галактики и создать сверхмассивную черную дыру.

В 2014 году астрономы обнаружили нечто похожее на черную дыру средней массы в рукаве спиральной галактики.

Астрономы очень усердно искали эти черные дыры среднего размера, — говорится в заявлении соавтора исследования Тима Робертса из Университета Дарема в Великобритании. Были намеки, что они существуют, но IMBHs вели себя как давно потерянный родственник, который не заинтересован в том, чтобы его нашли.

Более новые исследования, начиная с 2018 года, предположили, что эти промежуточные черные дыры могут существовать в центре карликовых галактик (или очень маленьких галактик). Наблюдения 10 таких галактик (пять из которых были ранее неизвестны науке до этого последнего исследования) выявили рентгеновскую активность — обычную для черных дыр — предполагая наличие в них черных дыр с массой от 36 000 до 316 000 солнечных масс. Эта информация поступила от компании Sloan Digital Sky Survey, которая изучает около 1 миллиона галактик.

Черные дыры как область пространства-времени

Черные дыры еще определяют как область пространства-времени. Сергей Попов объясняет, что все современные теории гравитации — теории геометрические. В них гравитация описывается как свойство пространства и времени. Имеется в виду, что между пространством и временем можно составить уравнение, это взаимосвязанные величины.

С начала ХХ века, с первых работ Эйнштейна по теории относительности, пространство и время объединены в некоторую сущность. Любые тела, не только массивные, но и самые маленькие, искривляют пространство вокруг себя и одновременно влияют на ход времени. Современные измерения позволяют определить, что в одном месте время идет не так, как в другом. Можно провести эксперимент и обнаружить эту разницу.

Визуализация черной дыры

(Фото: NASA)

Черная дыра — это экстремальный способ воздействия на пространство — когда в одном месте собрали так много вещества или энергии, что пространство-время свернулись и образовали специфическую область. Можно говорить, что черная дыра — это объект, но с бытовой точки зрения объект — это что-то имеющее поверхность. Если идти по абсолютно темной комнате, можно наткнуться на стол, это будет объект с началом в конкретной точке. Если в абсолютно темной комнате или с завязанными глазами попасть в черную дыру, невозможно заметить ее границу. Потому что нет никакой твердой поверхности, человек сразу окажется внутри этой области.

Сергей сравнивает такой переход с государственными или областными границами. Если идти по лесу из одной страны в другую, то без указателей и карт невозможно заметить, в какой точке кончается одно государство и начинается другое. Лес в Финляндии ничем не отличается от леса в России, и нет никакой четкой границы, на которую можно наткнуться. И черная дыра — это такая область, где масса свернула пространство-время, и в итоге никакие предметы не могут ее покинуть, как только пересекут границу. Все, что туда попало, навсегда останется за горизонтом.

Футурология

Выход в космос: где в России можно посмотреть на звезды

Черные дыры интересны в первую очередь как экстремальные объекты. Это максимально скрученное пространство-время, и многие эффекты становятся более заметны вблизи черных дыр. Начинают появляться принципиально новые физические феномены.

Визуализация черной дыры

(Фото: NASA)

В теории гравитации стремятся подобраться как можно ближе к этим экстремальным объектам. Поэтому, говорит Сергей, изучение поведения вещества в окрестности черных дыр — очень интересная штука.

Что мы видим на изображении чёрной дыры?

Как уже отмечалось, саму чёрную дыру увидеть нельзя, она практически не излучает. Но если её окружает светящееся вещество, то должна наблюдаться картина в виде светящегося кольца с тёмной областью в центре, которую называют тенью чёрной дыры. Название неудачное, поскольку тёмная область — не тень. Скорее, надо говорить о силуэте чёрной дыры. Правда, размер этого силуэта примерно в 2,6 раза больше размера горизонта событий. Вид силуэта определяется сильной гравитацией чёрной дыры. Разберёмся с этим подробнее.

Гравитация чёрной дыры не отпускает от неё свет. Однако на расстоянии 1,5RS существуют орбиты, по которым свет может двигаться вокруг чёрной дыры по окружности. Все пойманные в своеобразную ловушку фотоны образуют так называемую фотонную сферу. Эти орбиты неустойчивы. Фотоны, приблизившиеся к чёрной дыре, поглощаются ею, а удалившиеся от неё — убегают в космос. Благодаря последним наблюдатель со стороны может увидеть в области тени узкое светящееся кольцо, соответствующее фотонной сфере. Правда, пока изображение получено с недостаточным разрешением, и рассмотреть на нём это кольцо невозможно.

У чёрной дыры в центре галактики M87 излучающий аккреционный диск располагается под небольшим углом к плоскости, перпендикулярной направлению на Землю. В этом случае на полученном изображении как раз и будет видно светящееся кольцо с тёмной тенью в центре, но каким будет её радиус?

Чтобы разобраться, проще рассмотреть обратный процесс: будем обстреливать чёрную дыру фотонами. Прохождение фотона мимо чёрной дыры можно охарактеризовать прицельным параметром b — минимальным расстоянием, на которое он бы приблизился к центру чёрной дыры, если бы двигался по прямой без учёта её гравитации. Геометрически это длина перпендикуляра из центра чёрной дыры на эту прямую. Вдали от чёрной дыры фотон и движется по этой прямой. Гравитация искривляет его траекторию, причём тем сильнее, чем меньше b. Если прицельный параметр станет меньше

27RS2≈2,6RS,

то на своём пути вокруг чёрной дыры фотон пересечёт фотонную сферу и будет поглощён горизонтом событий. Если теперь развернуть движение фотонов в обратную сторону, то станет ясно, что из области вокруг чёрной дыры с радиусом 2,6RS излучение к наблюдателю не попадает, поскольку начала лучей для неё лежат на горизонте событий. Можно сказать, что здесь наблюдатель видит его «лицо» и «затылок». Это и будет «тень» чёрной дыры с радиусом 2,6RS. Вращение чёрной дыры немного изменит значение, но не более чем на 4%.

Интересно посмотреть, что будет в случае, когда аккреционный диск повёрнут к наблюдателю ребром? Будем ли мы наблюдать что-то помимо полоски диска, аналогичной той, которую увидим, повернув к себе ребром монету? На первый взгляд кажется, что мы ничего другого не увидим, но это — ошибочное мнение. Здесь опять вмешивается эффект искривления лучей в сильном гравитационном поле. Излучение от задней, невидимой нам половины аккреционного диска благодаря гравитации обогнёт чёрную дыру со всех сторон, и мы снова увидим вокруг тёмного силуэта светящееся кольцо с тем же радиусом «тени». Подобную чёрную дыру можно увидеть в фильме «Интерстеллар».

Отчётливо видно, что полученное ЕНТ изображение несимметрично — снизу оно значительно ярче. Это результат так называемого доплеровского усиления, из-за которого излучение вещества, движущегося на нас, будет ярче, чем удаляющегося от нас.

Фантазия или реальность?

Может ли черная дыра быть сущей выдумкой, которую разве что на компьютере можно смоделировать? Или же ее можно увидеть на практике? Ответ: возможно.

Во Вселенной есть две относительно близлежащие сверхмассивные черные дыры, которые настолько велики и близки, что их тени могут быть запечатлены с использованием современных технологий.

В центре нашего Млечного Пути есть черные дыры на расстоянии 26 000 световых лет с массой в 4 миллиона раз больше массы Солнца и черная дыра в гигантской эллиптической галактике M87 (Messier 87) с массой в 3-6 миллиардов солнечных.

M87 в тысячу раз дальше, однако в тысячу раз массивнее и в тысячу раз больше, поэтому оба объекта будут иметь примерно один диаметр тени, проецируемой на небо.