Содержание
- Избранное
- См. также
- Термоядерный реактор на антинаучной фигне[править]
- Проводники тороидального и полоидального поля
- Открытие атомной энергии
- Токамак в Казахстане
- Атомная эра
- Риски ИТЭР
- Преимущества и недостатки
- Токамак
- Разработка и первые испытания водородной бомбы
- Лед и пламя
- ГИРОТРОНЫ
- КОММУТИРУЮЩАЯ АППАРАТУРА
- Вторая жизнь КТМ
- Преимущества слияния
- Технология недели: модель авторизации Zero Trust
- Тема недели: термоядерный реактор ITER
- Разработка недели: самовосстанавливающийся материал на основе кальмара
Избранное
См. также
Термоядерный реактор: начало сборки
Мария Роговая • Библиотека • «Коммерсантъ Наука» №24, сентябрь 2020
Физтех — Международному термоядерному реактору
Михаил Петров, Валерий Афанасьев, Евгений Мухин, Александр Шевелев • Библиотека • «Природа» №9, 2018
Третий путь атомной энергетики
Роман Фишман • Библиотека • «Популярная механика» №9, 2019
О настоящем и будущем термоядерной энергетики
Александр Бурдаков • Библиотека • «Наука из первых рук» №5–6(76), 2017
Неукротимая плазма ITER
Татьяна Пичугина • Библиотека • «Троицкий вариант» №19, 2016
На пути к термоядерной энергетике
17.05.2009 • Кристофер Ллуэллин-Смит • Видеотека
Энергетика будущего: управляемый термоядерный синтез
27.11.2008 • Игорь Семенов • Видеотека
«Национальная поджигательная установка» резко повысила эффективность термоядерного синтеза
17.02.2014 • Игорь Иванов • Новости науки
Звезды на земле: термояд
Игорь Егоров • Библиотека • «Популярная механика» №5, 2012
Приключения термояда в пузырьке
Сергей Комаров • Библиотека • «Химия и жизнь» №4, 2015
Термоядерный реактор на антинаучной фигне[править]
Ну, тут всё просто: это холодный термоядерный синтез. Почему это невозможно — см. выше. Если же до вас не доходят фразы «звездная температура», «высокая энергия» и «термоядерная бомба», или вы насмотрелись на красиво светящееся доказательство того, что у Тони Старка есть сердце (об этом ниже), физика тут бессильна, а вот медицина заинтересуется. А если не все готовы верить Визарду на его авторитетное, но не всегда достаточно убедительное слово — ну вы вот представьте себе мюонный катализ. Мюон на орбите — он вместо электрона, но он очень тяжёлый по сравнению с. В результате его орбита практически «скребёт по ядру» и заряд таки уравновешивается. Отталкивание ослабевает (соседний атом для вступления в химическую связь приближается на опасное расстояние) и реакция начинается! Вот это — да, работает (только мюонов не напасёшься, а то мы бы давно бы). А тут приходит какой-то гриб-весёлка с горы и начинает втирать, что подобным образом может работать растворение водорода в соответствующем металле. При размерах кристаллической решётки-то! Да там от любого ближайшего «компенсатора заряда» до ядра как кузнечику до Луны.
Внешне «реакторы холодного синтеза» могут быть похожи на фузоры, однако в отличие от них там нет обвеса, только провод, идущий в розетку. По сути дела все эти «реакторы» — это электронагреватели, что свидетельствует о том, что их авторы даже фузор собрать не в состоянии по причине дефицита мозгов. В особо чудовищных случаях в конструкции есть лампочка. Хотите посадить автора в лужу? Выньте штепсель из розетки, а также потребуйте полные чертежи устройства, потому что собранный без участия автора девайс работать не будет, что нарушает критерий научности и выдает мошенничество. Такие дела.
Да, о дуговом реакторе Тони Старка. Это никоим образом не термоядерный реактор, что бы там не говорил Тони Старк. Это — вы наверное удивитесь — топливный элемент, в пользу чего говорит наличие материалов платиновой группы (из которых делаются химические катализаторы), необходимость зарядки этой штуки (ох как просело напряжение после включения сердца Тони Старка) и не особо большая долговечность (по причине расходования палладия). Самым примечательным во всем этом являются слова Ивана Ванко про палладий у сердца. Извините мой французский, но кардиологи всего мира угорали над его словами очень долго (дело в том, что палладий активно используется в медицине). Но, эта фиговень красиво светится, а ещё благодаря ней костюм Железного Человека может летать, и для фанатов этого достаточно.
Проводники тороидального и полоидального поля
Обязанность Российской Федерации заключается в поставке 22 километров проводников на основе 80 тонн сверхпроводящих Nb3Sn стрендов для обмоток катушек тороидального поля (тп) и 11 км проводников на основе 40 тонн сверхпроводящих NbTi стрендов для обмоток катушек полоидального поля (пп) магнитной системы ИТЭР. Изготовление в РФ и поставка сверхпроводников для магнитной системы ИТЭР позволит на базе создаваемого в России одного из крупнейших в мире промышленного производства уникальных наноструктурированных сверхпроводящих материалов обеспечить инновационное развитие атомной энергетики и ряда других отраслей техники (электротехника, транспорт, электроника, медицина).
К настоящему моменту Россия выполнила все обязательства по изготовлению и поставке в Организацию ИТЭР проводников тороидального и полоидального поля.
Открытие атомной энергии
Отто Хан
В 1938 году немецкие физики Отто Хан и Фриц Штрассман бомбардировали атом урана нейтронами в попытке образовать тяжелые элементы. Но ядро урана распалось на более лёгкие элементы барий и криптон, что значительно меньше, чем уран. Ученые озадачились неожиданными результатами так как открыли расщепление ядра.
Австрийский физик Лиза Мейтнер, бежавшая в Швецию после вторжения Гитлера в ее страну, поняла, что расщепление ядра также освобождает энергию. Работая над этой проблемой, она установила, что деление дает минимум два нейтрона. В конечном счете, другие физики поняли, что каждый вновь освобожденный нейтрон может продолжать вызывать две отдельные реакции, каждая из которых может вызвать по крайней мере еще. Один удар может запустить цепную реакцию, управляя выпуском еще большей энергии.
Токамак в Казахстане
Казахстанская установка была построена к 2010 году на специально отведённой площадке в административной зоне бывшего Семипалатинского полигона – городе Курчатове. Комплекс состоит из нескольких технологических зданий, в которых размещены узлы и агрегаты токамака, а также мастерские, помещения для обработки данных, размещения персонала и т.п. Проект был разработан в России на базе Национального центра термоядерных исследований (Курчатовский институт). Вакуумную камеру, магнитные катушки и прочее проектировали и собирали в НИИ электрофизической аппаратуры им. Д.В. Евремова (НИИ ЭФА), автоматику – в Томском политехническом институте. Участниками проекта с российской стороны также стали Всероссийский институт токов (НИИ ТВЧ), ТРИНИТИ (Троицкий институт инновационных и термоядерных исследований). Генеральным проектировщиком от Казахстана выступило ТОО “Промэнергопроект”, а непосредственно монтировало комплекс УПК “Казэлектромонтаж”. После завершения всех работ КТМ был запущен и дал первую плазму. Затем финансирование проекта свернули, и токамак на долгие шесть лет превратился в дорогостоящий высокотехнологичный туристический объект.
Монтаж оборудования дооснащения КТМ / Григорий Беденко
Атомная эра
По использованию в качестве источника энергии урана в мире существует резкая дифференциация. Всего сейчас работает 191 ядерная электростанция с 451 ядерным реактором (еще 60 реакторов находятся в стадии строительства). Из этого числа 100 реакторов построены в США и дают этой стране 20% электроэнергии. В России 36 реакторов дают почти пятую часть электроэнергии. Есть страны, в которых ядерная энергия — это треть энергии в ее общем балансе (Южная Корея, Финляндия). Имеются страны, где эта доля — почти половина всей энергии (Словакия, Украина). А вот в Китае и Индии доля ядерной энергии в общем балансе меньше 5%. Совсем не используется ядерная энергия в Австралии, в большинстве стран Южной и Центральной Америки и в многочисленных мелких государствах Океании. Опережает все страны по этому показателю Франция, в которой 58 ее ядерных реакторов производят 77% всей вырабатываемой в стране электроэнергии. Неслучайно статья в Википедии об экономике Франции начинается словами: «Франция — высокоразвитая страна, ядерная и космическая держава».
Отчасти это объясняется тем обстоятельством, что во Франции еще в 30-е годы прошлого века начали развиваться работы по ядерной физике. Ирен и Фредерик Жолио-Кюри (как и Энрико Ферми в Италии) стали нобелевскими лауреатами за получение новых изотопов («меченых атомов»). Но они не поняли, что в их опытах наблюдалась также реакция деления урана. Об этом догадались немецкие радиохимики и физики О. Ган, Ф. Штрассманн, Л. Мейтнер. Началась атомная эра. Энрико Ферми продолжал работы с ураном уже в США. Он изобрел и построил ядерный реактор, где в ноябре 1942 года впервые в мире была осуществлена цепная ядерная реакция деления урана. Но целью создания первых реакторов было не выработка электроэнергии, а получение плутония, искусственного трансуранового элемента, способного, как и уран, к взрывному осуществлению реакции деления.
После окончания войны и ужасных августовских событий 1945 года в Хиросиме и Нагасаки интересы многих физиков-ядерщиков сосредоточились на мирном использовании энергии деления. Их вдохновлял и запуск в 1954 году первой в мире ядерной электростанции в СССР. В реакторостроении Франция вскоре стала мировым лидером. Возможно, в этом немалую роль сыграли и почти полное отсутствие во Франции секретности ядерных исследований, и большой интерес к этим исследованиям французского правительства. На юге Франции, в маленьком городке Кадараш в 60 километрах от Марселя был создан мощный научный центр ядерной физики.
И именно там, неподалеку от Кадараша, в 2006 году было намечено построить ИТЭР — международный термоядерный экспериментальный реактор. Огромную строительную площадку размером с 400 футбольных полей было решено создать в лесном массиве, поскольку вся безлесная сельскохозяйственная округа была арендована частными владельцами. Первое дерево было срублено 29 января 2007 года. Но перед этим несколько лет уточнялись научные предпосылки строительства реактора и почти пять лет разрабатывался технический проект сооружения. Много времени ушло и на организацию финансирования проекта и создание управляющих органов. Первоначально планировалось запустить реактор в 2022 году и затратить 5 миллиардов долларов. Но в 2012 году проект был пересмотрен, сроком окончания строительства был намечен 2025 год, а предполагаемая сумма затрат возросла до 20 миллиардов долларов. Сейчас пройдена половина дистанции, и панорама строительства поражает воображение.
Кто же затеял и осуществил проект этой грандиозной стройки, поистине «стройки ХХI века»? Как возникла система финансирования и изготовления многочисленных узлов и агрегатов будущего реактора?
Риски ИТЭР
В настоящее время ИТЭР находится на полпути к своей первоначальной цели циркуляции плазмы.
Разработчики постоянно работают над прогнозированием и смягчением рисков, которые могут привести к дополнительным задержкам или затратам.
Конечной целью, конечно, является не просто циркулирующая плазма, но и плавление дейтерия и трития для создания “горящей” плазмы, которая генерирует значительно больше энергии, чем поступает в нее. Токамак ИТЭР должен генерировать 500 мегаватт электроэнергии, в то время как коммерческие термоядерные установки будут размещать более крупные реакторы, чтобы генерировать от 10 до 15 раз больше энергии. Согласно планам, 2000-мегаваттный термоядерный завод поставит 2 миллиона домов электричеством..
Если проект окажется успешным, ученые ИТЭР предсказывают, что термоядерные электростанции могут начать выходить в эксплуатацию уже к 2040 году по производству 2 гигаватт и более. Капитальные затраты на строительство АЭС должны быть аналогичны капитальным затратам нынешних АЭС ― около 5 миллиардов долларов за гигаватт. В то же время термоядерные электростанции просто используют дейтерий и тритий, и поэтому избегают “затрат на добычу и обогащение урана, или затрат на уход за радиоактивными отходами и их утилизацию.
Строительство атомной станции синтеза стоит больше, чем строительство станции ископаемого топлива. Цены на ископаемое топливо очень высоки, а расходы на топливо для синтеза незначительны, так что в течение срока службы электростанции расходы будут незначительны.
В то же время ископаемое топливо обходится дорого не только из-за финансовых значений. Огромные затраты на ископаемое топливо связаны с воздействием на окружающую среду, будь то из-за добычи полезных ископаемых, загрязнения окружающей среды или выброса парниковых газов. Синтез углерода – бесплатен.
Преимущества и недостатки
Хотя рентабельность данной установки еще находится под вопросом, согласно работам многих исследователей – создание и последующее развитие технологии управляемого термоядерного синтеза может в результате дать мощный и безопасный источник энергии. Рассмотрим некоторые положительные стороны подобной установки:
- Основным топливом термоядерного реактора является водород, а это означает – практически неисчерпаемые запасы ядерного топлива.
- Добыча водорода может происходить посредством переработки морской воды, которая доступна большинству стран. Из этого следует невозможность возникновения монополии топливных ресурсов.
- Вероятность аварийного взрыва в процессе работы термоядерного реактора значительно меньше, чем в процессе работы ядерного реактора. Согласно оценкам исследователей, даже в случае аварии выбросы радиации не будут представлять опасности для населения, а значит отпадает и надобность в эвакуации.
- В отличие от ядерных реакторов, термоядерные реакторы вырабатывают радиоактивные отходы, которые имеют короткий период полураспада, то есть быстрее распадаются. Также в термоядерных реакторах отсутствуют продукты сгорания.
- Для работы термоядерного реактора не требуются материалы, которые используются также для ядерного оружия. Это позволяет исключить возможность прикрытия производства ядерного оружия путем оформления материалов для нужд ядерного реактора.
Термоядерный реактор — вид изнутри
Однако, существует также ряд технических недоработок, с которыми постоянно сталкиваются исследователи.
Например, нынешний вариант топлива, представленный в виде смеси дейтерия и трития, требует разработки новых технологий. Например, по окончанию первой серии тестов на крупнейшем на сегодняшней день термоядерном реакторе ДЖЕТ, реактор стал настолько радиоактивным, что далее потребовалась разработка специальной роботизированной системы обслуживания для завершения эксперимента. Другим неутешительным фактором работы термоядерного реактора является его КПД – 20%, в то время как КПД АЭС – 33-34%, а ТЭС — 40%.
Термоядерный реактор ДЖЕТ
Токамак
Для создаваемого устройства И. Н. Головин придумал название — токамак (ТОроидальная КАмера с МАгнитными Катушками). Токамак-1 (Т-1) и Токамак-2 (Т-2) оказались неудачными — плазма разрушалась очень быстро. Наконец, в 1968 году на Т-3 был достигнут некоторый успех — плазма с температурой 10 миллионов градусов просуществовала почти секунду. При этом были зафиксированы нейтроны — продукты термоядерной реакции синтеза. Успех был повторен английскими физиками на их аналогичном устройстве. В мире начался настоящий бум сооружения подобных устройств — к 1986 году их общее число достигло 300. Этому способствовало полное рассекречивание работ по мирному использованию термоядерной энергии, которые велись в СССР.
В 1956 году И. В. Курчатов на конференции физиков-ядерщиков в английском ядерном центре Харуэлл сделал доклад, в котором рассказал об идее токамака и ее осуществлении в СССР. А в это время еще существовала во всех странах полная секретность работ по ядерной энергетике (о запуске в СССР ядерной электростанции в 1954 году было объявлено, но детали ее конструкции оставались строго секретными). Поэтому доклад Курчатова стал сенсацией. Мировое сообщество физиков-ядерщиков было поражено успехами советской физики и размахом работ по термоядерному синтезу. Сам термин «токамак» стал международным словом, не требующим перевода (несколько ранее так было со словом «спутник»).
В разных проектах использовались различные термоядерные реакции. Вот только некоторые из них (с указанием кинетической энергии продуктов реакции):
2H + 2H → 1H + 3H + 4,0 МэВ,2H + 2H → 3He + 1n + 3,3 МэВ,2H + 3H → 4He + 1n + 17,6 МэВ,3He + 3He → 4He + 21p + 12,8 МэВ,2H + 3He → 1p + 4He + 18,5 МэВ,2H+ 7Li → 24He + 1p + 16,9 МэВ.
Внутри звезд, где кроме водорода, гелия и лития присутствуют и ядра других легких элементов, возможны и иные ядерные реакции синтеза. Но основное энерговыделение определяется превращением водорода в гелий. Кинетическая энергия продуктов этих реакций синтеза в расчете на одну частицу оказалась в несколько раз больше, чем в реакциях деления тяжелых ядер.
Токамаки все больше увеличивались в размерах, создавались все более сильные магнитные поля, возрастала сила тока в плазме. При токах в тысячи ампер воздействующие на них магнитные поля должны иметь индукцию не менее 10 тесла — это в сотни тысяч раз больше магнитного поля Земли и в тысячи раз больше магнитных полей в электромагнитах подъемных кранах. Существование магнитного поля в катушке электромагнита определяется током в его обмотке. Для создания магнитных полей в десятки тесла сила тока в обмотке должна составлять десятки тысяч ампер. А это возможно только тогда, когда обмотки не будут иметь электрического сопротивления, т.е. будут сделаны из сверхпроводящего материала, и их температура не будет превышать 4 кельвинов. Единственным охладителем до таких температур может быть только жидкий гелий.
Технология создания сверхсильных магнитных полей создавалась для различных целей — для ускорителей заряженных частиц, для медицинских томографов. Но в этих случаях магнитное поле имело обычную соленоидальную форму. А в токамаке создание необычного тороидального поля требовало и необычных сердечников, и необычных их обмоток. Важнейшим вопросом становилась и защита внутренних стенок реакционной камеры от случайных выбросов плазмы с ее многомиллионной температурой, и защита этих стенок от разрушающего действия быстрых нейтронов, и десятки других трудностей, которые нужно было преодолевать. Мечта о 5–10 годах для решения проблемы «приручения» термоядерной реакции так и осталась мечтой.
В 1985 году были построены Токамак-15 и Токамак-16. Это были совместные разработки СССР — Китай и СССР — Япония, поскольку в Советском Союзе уже не было возможности затратить на эти работы миллионы долларов. Зато научными руководителями проектов были российские ученые — академики Б. Б. Кадомцев и Е. П. Велихов (Е. П. даже был награжден японским «Орденом восходящего солнца»). Длительность устойчивого состояния плазмы в этих реакторах уже превышала секунду. Но главное, стало ясно, что для длительного устойчивого состояния плазмы необходимы реакторы значительно больших размеров — примерно в 10 раз больших, чем Токамак-16. Стоимость сооружения такого реактора оценивалась уже в несколько миллиардов долларов. И ни одна страна в мире (включая и США) не могла себе позволить такой научный эксперимент. Тем более, что предполагаемый реактор мог и не дать ожидаемого результата.
Разработка и первые испытания водородной бомбы
В результате тщательного теоретического анализа, специалисты из СССР и США пришли к выводу, что смесь дейтерия и трития позволяет легче всего запускать реакцию термоядерного синтеза. Вооружившись этими знаниями, учёные из США в 50-х годах прошлого века принялись за создание водородной бомбы. И уже весной 1951 года, на полигоне Эниветок (атолл в Тихом океане) было проведено тестовое испытание, однако тогда удалось добиться лишь частичного термоядерного синтеза.
Прошло ещё чуть более года, и в ноябре 1952 года было проведено второе испытание водородной бомбы мощностью порядка 10 Мт в тротиловом эквиваленте. Однако тот взрыв трудно назвать взрывом термоядерной бомбы в современном понимании: по сути, устройство представляло собой крупную ёмкость (размером с трёхэтажный дом), наполненную жидким дейтерием.
В России тоже взялись за усовершенствование атомного оружия, и первая водородная бомба проекта А.Д. Сахарова была испытана на Семипалатинском полигоне 12 августа 1953 года. РДС-6 (данный тип оружия массового поражения прозвали “слойкой” Сахарова, так как его схема подразумевала последовательное размещение слоёв дейтерия, окружающих заряд-инициатор) имела мощность 10 Мт. Однако в отличие от американского “трёхэтажного дома”, советская бомба была компактной, и её можно было оперативно доставить к месту выброски на территории противника на стратегическом бомбардировщике.
Приняв вызов, США в марте 1954 произвели взрыв более мощной авиабомбы (15 Мт) на испытательном полигоне на атолле Бикини (Тихий океан). Испытание стало причиной выброса в атмосферу большого количества радиоактивных веществ, часть из которых выпало с осадками за сотни километров от эпицентра взрыва. Японское судно “Счастливый дракон” и приборы, установленные на острове Рогелап, зафиксировали резкое повышение радиации.
Так как в результате процессов, происходящих при детонации водородной бомбы, образуется стабильный, безопасный гелий, ожидалось, что радиоактивные выбросы не должны превышать уровень загрязнения от атомного детонатора термоядерного синтеза. Но расчёты и замеры реальных радиоактивных осадков сильно разнились, причём как по количеству, так и по составу. Поэтому в руководстве США было принято решение временно приостановить проектирование данного вооружения до полного изучения его влияния на окружающую среду и человека.
Лед и пламя
Эйфория после взрыва водородной бомбы, который показал термоядерную энергию в действии, прошла после того, как выяснилось, что управление горением плазмы — задача крайне сложная. Дело в том, что плазма, которая состоит из газовой смеси двух изотопов водорода — дейтерия и трития, должна иметь температуру горения 100 млн градусов. Такая температура на период длительностью несколько секунд была неоднократно достигнута в качестве пиковой отметки на установках термоядерной энергии в Европе, Японии, США, Корее и Китае. Удержание такой температуры на большие периоды времени, а в идеале — в постоянном режиме, должно происходить благодаря постоянному магнитному полю, которое может быть обеспечено только при условии, что магнитные катушки сделаны из сверхпроводящих материалов. Но сверхпроводники хорошо работают как раз при отрицательных температурах, то есть при 4 К, или минус 270°С. Причем эти объекты — ледяной и горящий — внутри установки расположены всего в нескольких метрах друг от друга. Для термоизоляции этих двух объектов используются сложные системы магнитного поля. Тем не менее вопрос термоизоляции — далеко не самый сложный среди целого ряда других технических проблем. Одна из таких проблем — это чистота плазмы, которая в ходе своего горения довольно быстро загрязняется, несмотря на то что оно происходит в сверхчистой вакуумной камере. Дело в том, что плазма не всегда горит равномерно, а зачастую локализуется около стенки камеры и начинает расплавлять ее. Как только в плазме появляются элементы примеси, эта примесь становится источником тормозного излучения. Тормозным оно называется, поскольку его испускает быстрая заряженная частица, которая тормозит в электрическом поле и при этом рассеивается. Если таких частиц примеси оказывается больше определенного количества, плазма не может продолжать гореть.
«Приемный пункт» для плазменной струи — это дивертор, который смонтирован внутри камеры. Струя плазмы поступает в него не постоянно, а импульсно. В пиковых моментах дивертор работает на предельной температуре, при которой он также может плавиться и портить плазму. Материалы изготовления первой (самой внутренней и, соответственно, самой горячей стенки) реактора — это одна из ключевых проблем проекта ИТЭР. Из всей таблицы Менделеева ученые выбрали для стенки вакуумной камеры реактора самые термостойкие материалы. Еще каких-то пять лет назад эту миссию выполнял углерод, но в ходе экспериментов он не оправдал ожиданий: после каждого импульса плазменной струи от углеродных стенок поднималась пыль, которая накапливала в себе тритий, сорбируя его из газовой изотопной смеси, нарушая тем самым ее состав. Кроме того, тритий токсичен и должен полностью выгорать либо циклически возвращаться в камеру, а, впитываясь в углеродную пыль, он таким образом накапливался. Тогда выбор материалов пал на бериллий для стенок камеры и вольфрам для дивертора. Бериллий — самый легкий из всех термостойких элементов и, конечно, очень дорогой материал. Если на этом этапе мы вспомним, что размер дивертора соответствует примерно железнодорожному составу, то легко сможем ответить себе на вопрос о переносе сроков и кратном увеличении финансовых вложений в проект.
ГИРОТРОНЫ
Одним из обязательств России в рамках Проекта ИТЭР является изготовление и поставка оборудования для ЭЦР нагрева и генерации тока – восьми гиротронов 170 ГГц /1МВт – которые являются одним из ключевых элементов ИТЭР.
Гиротроны – уникальная разработка отечественных специалистов. Россия – признанный мировой лидер в производстве этой высокотехнологичной системы дополнительного нагрева плазмы. Отечественными специалистами освоена CVD технология выращивания поликристаллических алмазных дисков диаметром 75 мм и толщиной до 2 мм для выходных окон гиротронов с мегаваттным уровнем мощности для ИТЭР.
КОММУТИРУЮЩАЯ АППАРАТУРА
Вклад РФ в проект ИТЭР в области систем электропитания определен пакетом поставки 41Р3 с названием: «Устройства коммутации тока и вывода энергии из сверхпроводящих обмоток, силовые цепи постоянного тока, включая измерительные устройства». Практически все оборудование, подлежащее поставке, является уникальным, т.е. не имеющим аналогов на мировом рынке, и требует специальной разработки. Наиболее сложной задачей является создание коммутационных аппаратов, способных длительно выдерживать сверхвысокие токи (до 70 кА), отключать их под высоким напряжением (до 10 кВ) и при этом обладать высоким быстродействием. Результаты многолетней работы в этой области, достигнутые российскими учеными и инженерами, послужили основой того, что поставка всего комплекса оборудования для вывода энергии из обмоток ИТЭР, основанного на использовании коммутационных аппаратов, была поручена Российской Федерации.
Вторая жизнь КТМ
Перезагрузка проекта произошла накануне ЭКСПО-2017 в Астане. Он отлично стыковался с концепцией Всемирной выставки, посвящённой энергии будущего. Девятого июня установка была вновь запущена в присутствии большого количества журналистов. На пуске присутствовали российские разработчики. Как было заявлено в ходе торжественного мероприятия, цель первого этапа физического пуска – отладка и проверка штатных систем КТМ. Также, по словам руководителя Национального ядерного центра РК Эрлана Батырбекова, на базе казахстанского токамака учёные из разных стран смогут проводить широкий спектр исследований, в том числе по модернизации существующих промышленных реакторов.
Преобразователь переменного тока для КТМ имеет футуристический вид / Григорий Беденко
Бауржан Чектыбаев / Григорий Беденко
Преимущества слияния
Вид на Землю из космоса (миссия Аполлон-17 ).
Сторонники термоядерной энергии указывают на множество потенциальных преимуществ перед другими источниками электроэнергии:
- не выделяются парниковые газы , такие как углекислый газ ;
- топливо, состоящие из дейтерия или трития ( изотопы из водорода ) в большинстве текущих проектов, не представляет какой — либо риск недостатка: дейтерий существует в почти неограниченных количествах в океане и тритий является побочным продуктом производства ядерной энергии, как деление и фьюжн;
- количество радиоактивных отходов намного меньше, чем количество радиоактивных отходов , производимых в настоящее время в ядерных реакторах деления; но, прежде всего, период полураспада радиоактивных отходов намного короче, порядка нескольких десятилетий, по сравнению с сотнями тысяч лет или даже миллионами лет для некоторых отходов реакторов деления;
- инерционный термоядерный синтез должен позволить установку меньшего размера и стоимости по сравнению с сектором токамак-ИТЭР, что позволит более децентрализованно производить энергию.
Технология недели: модель авторизации Zero Trust
Распространение AR/VR-устройств делает популярными новые виды авторизации пользователей. Дело в том, что у такого оборудования нет экрана, на котором можно было бы ввести пароль или отсканировать отпечаток пальца. Взамен эксперты предлагают использовать модель Zero Trust (сокращенно ZeTA).
При таком способе авторизации система предлагает пользователю ответить «да» или «нет» на несколько вопросов. «Вопросы» могут быть отдельными словами. Ответы должны соответствовать секретной фразе. Например, ключ — это словосочетание «желтый или колесо». Пользователь пройдет авторизацию, если выберет «подсолнух» и «крутиться», а неверными назовет слова «сердце» и «уголь». При этом количество вопросов может варьироваться. Такой подход сделает авторизацию более удобной и надежной, особенно если человек использует очки дополненной реальности в общественном месте.
Тема недели: термоядерный реактор ITER
28 июля 2020 года в исследовательском центре Кадараш во Франции начали собирать экспериментальный термоядерный реактор типа токамак — сокращенно от «тороидальная камера с магнитными катушками». Строительство реактора планируют завершить в 2025 году. В проекте ITER участвуют ЕС, Индия, Китай, Южная Корея, Россия, США и Япония.
Термоядерный синтез — это реакция, в ходе которой легкие атомы объединяются в более тяжелые. В результате высвобождается энергия. Такой процесс постоянно происходит на Солнце и других звездах. Если ученые смогут построить работающий реактор, люди получат источник неограниченной и «зеленой» энергии.
Сам токамак по форме похож на полый бублик, из которого откачали воздух. В качестве топлива для реактора используют изотопы (подвиды) водорода дейтерий и тритий. Их помещают в токамак и с помощью электрического тока разогревают до температуры в несколько млн градусов. Тогда водород превращается в плазму — заряженный газ, в котором электроны оторваны от ядер атомов. Вся эта масса удерживается внутри реактора при помощи очень мощных магнитов. При температуре 150 млн °C (в десять раз жарче, чем на Солнце) начинается термоядерная реакция. Дейтерий и тритий сливаются и образуют атом гелия-4 и один нейтрон. Нейтроны вылетают за пределы магнитной ловушки и, сталкиваясь со стенками реактора, нагревают воду внутри них. В результате образуется пар, который вращает турбины.
Макет реактора ITER
(Фото: ITER)
Первую плазму на реакторе ITER планируют получить сразу после окончания строительства, в 2025 году. Однако эксперименты с термоядерной реакцией проведут только в 2035 году. Если они пройдут успешно, начнется выпуск термоядерных реакторов DEMO, которые можно будет использовать в коммерческих целях. ITER не единственный в мире проект, цель которого — получить термоядерную энергию. Токамаки есть в Китае, Великобритании и США.
Некоторые компании предлагают и другие типы реакторов. Основной конкурент токамака — стеллератор Wendelstein 7-X, который построили в Институте физики плазмы им. Макса Планка в немецком Грайфсвальде. Если токамак удерживает плазму в центре при помощи мощных магнитов, то стеллератор делает это благодаря своей сложной форме, напоминающей объемную ленту Мебиуса.
Макет стеллератора. Желтым показана плазма, синим — магнитное поле
(Фото: Max-Planck Institut für Plasmaphysik)
Американский стартап TAE Technologies (ранее Tri Alpha Energy) предложил реактор вытянутой формы. В качестве топлива компания использует водород и бор-11. При взаимодействии эти химические элементы не образуют нейтроны, а значит, не создают радиацию. Топливо на большой скорости подается в реактор с двух сторон. От столкновения оно нагревается и превращается в плазму. Минус такого устройства в том, что для его работы нужна очень высокая температура, примерно в 3 млрд °C.
Еще один вид реактора разрабатывает канадская компания General Fusion. Он представляет собой сферу, внутри которой находится расплавленный свинец. К устройству подключены паровые молотки, которые синхронно бьют по сплаву. В металле есть небольшой желобок, в который загружают горячую смесь дейтерия и трития. При каждом ударе молотков происходит микровзрыв, который провоцирует термоядерную реакцию.
Индустрия 4.0
Что такое индустрия 4.0 и что нужно о ней знать
Разработка недели: самовосстанавливающийся материал на основе кальмара
Ученые из американского Университета Пенсильвании и немецкого Института интеллектуальных систем им. Макса Планка создали самовосстанавливающийся материал на основе зубов кальмара. Разработка в первую очередь пригодится при производстве автоматических приводов, которые часто ломаются из-за того, что постоянно находится в движении.
Зубы кальмаров состоят из твердых и мягких компонентов, а также особых белков, которые восстанавливают поврежденный зуб. Ученые выделили это вещество и при помощи бактериального биореактора создали синтетический полимер. Если нагреть это вещество, оно может «залечить» раны и вернуться в исходную форму за несколько секунд. Еще одно преимущество материала в том, что он биоразлагаемый и не наносит вреда окружающей среде.