Как выбрать детский телескоп: советы специалистов

Общие рекомендации по выбору телескопа для просмотра планет

Если ваша основная цель при покупке телескопа – увидеть планеты, вот несколько общих правил, которые помогут при выборе одной из них.

  • Начните с выбора самой большой диафрагмы, которую позволяет ваш бюджет.
  • Среди выбранных, возьмите тот, у которого больше фокусное расстояние.
  • Проверьте окуляры, которые входят в комплект. Если есть “запас” по увеличению, в дальнейшем вы сможете  докупить их отдельно и увеличить возможности своего телескопа.
  • Если в комплекте есть сменные окуляры, позволяющие делать ваш телескоп “длинным” или “коротким” – это превосходно.
  • Если есть возможность недорого купить набор сменных окуляров (полные аналоги фирменных!), вспомните мудрую пословицу, что скупой платит дважды и не покупайте их.
  • Если в характеристиках не слишком дорого телескопа приведены фантастические цифры про увеличение в 600-1200 крат и т.п., не ведитесь на эти сугубо рекламные трюки. Посчитайте сами – чтобы достичь увеличения в 800 крат, нужно иметь апертуру в 320 мм (800/2,5). Думаю не все обсерватории в мире могут похвастаться такими телескопами.

Как движется телескоп

Следует потренироваться перемещать свой телескоп, не выходя из хорошо освещенного дома. Независимо от типа крепления, позиционные корректировки выполняются аналогичным образом.

В случае с некомпьютеризированными креплениями телескопа:

  1. Начать с ослабления фиксирующих ручек на высоте и азимуте (для альт-азимутальных креплений) или на осях прямого подъема и отклонения (для экваториальных креплений).
  2. Взяться за оптическую трубку, толкнуть или потянуть ее в нужном направлении.
  3. Заблокировать телескоп, чтобы он не двигался сам по себе.

Этот метод используется для больших, широких движений по небу. Для более инкрементальных перемещений ручные крепления должны иметь один или два кабеля или ручки «замедленного управления».

В случае с компьютеризированной монтировкой телескопа Go To:

  1. Использовать прилагаемый ручной контроллер для перемещения телескопа.
  2. Выбрать скорость нарастания в зависимости от того, как далеко нужно переместить телескоп по небу. Более высокие скорости используются для перемещения от одного объекта к другому, а более медленные скорости используются для центрирования объекта или удержания его в окуляре. Нужно потратить некоторое время, чтобы испытать эти скорости, поэкспериментировать с кнопками направления на ручном контроллере и понять, как пользоваться телескопом такого типа.

Космическая обсерватория «Спектр-УФ»

Международный проект космической обсерватории «Спектр-УФ» будет исследовать Вселенную в ультрафиолетовом и видимом диапазонах электромагнитного спектра с высоким угловым разрешением, а также регистрировать гамма-излучение в энергетическом диапазоне от 10 КэВ до 10 МэВ. Основную работу по проекту ведут Россия и Испания.

«Спектр-УФ»

(Фото: WSO-UV)

Космический телескоп с зеркалом диаметром 1,7 м оснастят спектрографами высокого и низкого разрешения, чтобы получать спектры высокого разрешения, и камерами для построения высококачественных изображений в ультрафиолетовом диапазоне. Он сможет конкурировать с телескопом «Хаббл».

«Спектр-УФ» будет заниматься не поиском планет, но изучит физико-химический состав планетных атмосфер в Солнечной системе и за ее пределами, физические и химические свойства межзвездного и околозвездного вещества (газа и пылевых частиц), природу активных галактических ядер, химическую эволюцию галактик. Важная задача «Спектра-УФ» — поиск скрытого вещества, то есть газа и пыли, трудноразличимых для уже существующих телескопов.

Сроки старта миссии «Спектр-УФ» несколько раз переносились. Ожидается, что обсерватория начнет работу осенью 2025 года. Запуск запланирован с космодрома «Восточный».

Устройство, назначение, принцип работы телескопа

Телескопы бывают разными – оптические (общего астрофизического назначения, коронографы, телескопы для наблюдения искуственных спутников Земли), радиотелескопы, инфракрасные, нейтринные, рентгеновские. Все телескопы, принимающие электромагнитное излучение, решают две основных задачи.

Первая задача — создать максимально резкое изображение и при визуальных наблюдениях увеличить угловые расстояния между объектами (звездами, галактиками и т. п.); собрать как можно больше энергии излучения, увеличить освещенность изображения объектов.

Вторая задача – увеличивать угол, под которым наблюдатель видит объект. Способность увеличивать угол характеризуется увеличением телескопа. Оно равно отношению фокусных расстояний объектива и окуляра

Планеты, видимые в телескоп с апертурой 130-200 мм

Если все более младшие модели относились к т.н. телескопам рефракторам (свет преломляется в них линзой-объективом), то телескопы с апертурой 130-200 мм (5-8 дюймов) уже относятся к т.н. “ньютоновским телескопам” или рефлекторам (свет в таком телескопе “собирает” специальное зеркало).

Конечно телескопы из этого ценового диапазона значительно дороже (а также более хрупкие и тяжелые), но зато вы получаете прекрасный уровень детализации поверхности ближайших планет и кое что, на что бесполезно было рассчитывать обладателям телескопов с меньшей апертурой – наблюдением космических объектов находящихся за пределами Солнечной системы и даже галактики Млечный путь – к туманностям и другим галактикам.

Если вы желаете рассмотреть планеты во всех деталях – рекомендую именно этот диапазон.

Планета Видимость Уровень детализации
Меркурий Да
Венера Да Различимы фазы, можно достаточно точно получать представление о том, что происходит в атмосфере нашей звездной соседки.
Луна Да Обитателям Луны теперь не спрятаться!
Марс Да Видны все основные детали поверхности.
Юпитер Да Юпитер как на фото! Видны крупнейшие спутники.
Сатурн Да Прекрасно различимы кольца планеты, планета, спутники.
Уран Да По прежнему точка. Крупная, но точка.
Нептун Да В виде точки.
Плутон Нет

Участок поверхности Луны с увеличением в 350 крат

Для фотографии

Как фотографировать через подобную оптику? Для этого нужны телескоп и любой фотоаппарат. Снимки можно делать даже с помощью самой простой модели и мобильного телефона. Например, окулярная проекция получается путем съемки даже на телефон сквозь окуляр. Для более качественных снимков потребуется уже фотоаппарат, у которого можно снять объектив, и тренога, которую следует использовать, чтобы избежать тряски рук. Фотографии также делаются через настроенный окуляр, причем лучше всего снимать в ясную погоду для получения четкой и качественной картинки.

Зачем нужны телескопы, их функции

Что можно увидеть в телескоп

Советы

  • Личная безопасность должна оставаться в приоритете. Убедитесь в том, что вы попросили разрешения находиться на чужой территории у ее собственника. Также помните о животном мире вокруг вас и убедитесь, что не нарушаете его спокойствия.
  • Хорошо одевайтесь. Ночью бывает морозно, даже сразу после заката может становиться холодно. Наденьте на себя несколько слоев одежды в зависимости от времени года, так чтобы ничего не смогло испортить сеанса небесного просмотра.
  • Хорошо изучите устройство вашего телескопа. Это лучше всего делать при дневном свете в домашней обстановке. Также при свете дня убедитесь, что видоискатель настроен параллельно с трубой телескопа. Используйте отдаленный объект, чтобы проверить выравнивание. Отрегулируйте видоискатель как следует, так как он понадобится вам для нахождения объектов. После заката холодно, и у вас не будет времени возиться с инструкцией.
  • Окуляр контролирует увеличение телескопа. Правильный выбор окуляра гарантирует вам незабываемый обзор. Для начала используйте окуляр с наименьшим фокусным расстоянием, например, 25 мм. Так вам будет легче находить объекты.

Из чего состоит?

Изучим строение телескопа:

  1. Оптическая труба — это та часть, которую большинство людей считают телескопом. Она имеет линзу спереди (рефрактор) или зеркало сзади (рефлектор), которое используется для сбора света. Некоторые оптические трубки имеют как линзы, так и зеркала. Это так называемые катадиоптрические телескопы. Наиболее распространенными являются телескоп Шмидта-Кассегрена (SCT) и Максутова-Кассегрена (MCT).
  2. Монтировка (крепление) — это то, что удерживает оптическую трубу. Она бывает нескольких типов: экваториальная, альт-азимутальная, компьютеризированная GoTo или ручная. Крепление Alt-Azimuth позволяет перемещать телескоп по прямым линиям — вверх, вниз, вправо и влево. Экваториальное крепление было разработано для отслеживания звезд, движущихся по дуге по небу. Его можно отрегулировать, чтобы компенсировать местоположение по широте. Экваториальные крепления могут быть очень простыми или иметь широкий спектр возможностей и компонентов, от простых двигателей на одной или обеих осях до полноценной компьютеризированной системы, которая может работать с телескопами обсерватории.
  3. Окуляр — это часть системы телескопа, которая фактически обеспечивает увеличение. Оптическая трубка собирает свет, а окуляр увеличивает изображение. Большинство стартовых наборов будут включать от одного до трех окуляров, каждый из которых обеспечивает разный уровень увеличения. Чем выше число на окуляре, тем меньше увеличение. Таким образом, окуляр 25 мм обеспечит меньшую мощность или меньшее увеличение, чем окуляр 10 мм.
  4. Линза Барлоу — это устройство, которое проходит между окуляром и фокусировщиком. Она умножает увеличение окуляра на указанную величину, обычно в 2 или 3 раза. Преимущество этой линзы состоит в том, что она дает больше возможностей увеличения при меньшем количестве окуляров.
  5. Диагональ. Рефракторы СКТ и МСТ обычно имеют диагонали. Больше не нужно опускаться на колени, чтобы посмотреть в телескоп, который указывает на звезды — диагональ изгибает свет в более удобное положение для просмотра. Главное, что нужно знать, это то, что диагональ 90 градусов, также называемая диагональю звезды, оптимизирована для астрономии. Диагонали под углом 45 градусов оптимизированы для использования в дневное время в качестве зон наблюдения, а не для астрономии.
  6. Фокусер — это подвижное устройство, которое используется для фокусировки изображения.
  7. Искатель с красной точкой (RDF) — это инструмент для нацеливания, как прицел на оружии. Он используется для того, чтобы направить телескоп на цель.

Первая настройка телескопа

Если у вас телескоп на экваториальной монтировке, перед первыми наблюдениями его нужно отбалансировать. Этот процесс хорошо показан в этом ролике (начиная с 9-й минуты). Телескоп на азимутальной монтировке в балансировке не нуждается.

Следующий шаг — настройка искателя телескопа. Этот аксессуар устанавливается на оптическую трубу и необходим для поиска объектов. Дело в том, что сам телескоп дает сильное увеличение и, вследствие этого, маленькое поле зрения. С его помощью обнаружить на небосклоне маленькую звезду, особенно без подготовки, довольно сложно. Искатель же — это мини-телескоп наоборот. У него маленькая кратность и широкое поле зрения. Поэтому для ориентирования на звездном небе используют именно его. Предварительно искатель настраивают. Цель настройки — расположить его параллельно оптической трубе, чтобы и телескоп, и искатель смотрели точно в одну сторону. Для этого используются специальные винты на держателе искателя. Вращайте их, сверяйтесь с картинкой в телескопе и стремитесь к полному совпадению изображения.

Итак, искатель настроен. Но смотреть на небо еще рано. Лучше всего первые наблюдения провести по знакомым вам наземным объектам. Установите на телескоп самый длиннофокусный окуляр, что у вас есть (он даст наименьшее увеличение), наведите трубу на соседний дом (не в окна, а на само здание) и попробуйте сфокусировать на нем телескоп. Поверьте, эта несложная вроде бы операция займет у вас приличное количество времени в первый раз. Однако потратив несколько часов на изучение понятного вам объекта, вы лучше поймете возможности своего телескопа. Смените окуляр, попробуйте установить линзу Барлоу или диагональную зеркало, снова сфокусируйте телескоп. После того как вы потренируетесь и поймете, как работает телескоп, можно будет переходить к первым астрономическим наблюдениям.

Более подробно о том, как пользоваться телескопом и как начать изучать космос, вы можете узнать из этой статьи.

4glaza.ru

Январь 2018

Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.

Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.

Другие обзоры и статьи о телескопах и астрономии:

Обзоры оптической техники и аксессуаров:

Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения:

Все об основах астрономии и «космических» объектах:

Источник

Со скольки лет стоит начинать наблюдения за космосом

Ребенку младше 8-10 лет вряд ли будет столь захватывающе работать с телескопом. В младшем возрасте проводить наблюдения самостоятельно очень трудно. Управление прибором может наскучить и без помощи родителей не обойтись.

Детки чуть постарше отнесутся к делу гораздо серьезнее и с большим интересом примут телескоп в подарок, рассматривая Луну, кратеры, кольца Сатурна, спутники Юпитера, Солнце (с помощью особого светофильтра).

Да, справиться самостоятельно с настройками даже простейшего прибора, ребенок сможет с 8-10 лет. Но, конечно, все индивидуально. Детки и в 6 лет могут попросить о покупке телескопа, правда стоит учитывать, что наблюдения проводятся ночью, поэтому от возраста очень многое зависит.

Как настроить цифровые каналы на телевизоре Doffler

Каждый телеприемник Доффлер оснащается DVB-T2 тюнером, позволяющим настроить и смотреть цифровые каналы. Процесс поиска телеканалов очень прост.

Необходимо:

  • подключить к телеприемнику телевизионную антенну;
  • включить устройство, затем открыть «Меню» и перейти в раздел «Настройка каналов»;
  • выбрать «Автоматическую настройку»;
  • определить источник сигнала (антенна или кабель);
  • выбрать тип каналов, которые нужно отыскать. При выборе «ЦТВ + АТВ» телевизор сначала отыщет и сохранит все цифровые каналы, а затем приступит к поиску аналоговых;
  • после того, как все каналы будут найдены, пользователь получит уведомление о завершении настройки и сможет приступить к просмотру телевизора.

На телеприемниках Доффлер для просмотра цифровых телеканалов нужно в списке источников сигнала выбрать «DTV». Чтобы перейти на аналоговое телевидение, следует переключиться на «ATV».

Зеркальные модели

Зеркальные телескопы называют рефлекторами. На них устанавливается сферическое зеркало, которое собирает световой пучок и отражает его с помощью зеркала на окуляр. Для зеркальных моделей не характерна хроматическая аберрация, так как свет не преломляется. Однако у зеркальных приборов выражена сферическая аберрация, которая ограничивает поле зрения телескопа.

Зеркальные модели легче разрабатывать, чем линзовые аналоги. Поэтому данный вид более распространен. Самый большой диаметр телескопа зеркального типа составляет более семнадцати метров. На территории России самый большой аппарат имеет диаметр шесть метров. 

Что это такое?

Телескоп — это прибор, предназначенный для наблюдения за удаленными объектами. Термин обычно относится к оптическим приспособлениям, но существуют телескопы для большей части спектра электромагнитного излучения и для других типов сигналов. Оптический телескоп увеличивает видимый размер удаленных объектов.

Телескопы работают с использованием одного или нескольких изогнутых оптических элементов — линз или зеркал — для сбора света или другого электромагнитного излучения и фокусировки этого света или излучения туда, где изображение можно наблюдать, фотографировать или изучать.

Что означают характеристики телескопа?

Технические характеристики телескопа сперва могут напугать неподготовленного человека. Апертура, увеличение, фокусное расстояние… рефлекторы, рефракторы, какие-то числа и множители – короче говоря, достаточно информации, чтобы запутаться.

Хотя все это выглядит довольно сложно и сбивает с толку, на самом деле понять что к чему не так уж и сложно, если знать несколько простых правил. Если вы хоть немного знакомы с фотографией, то вот хорошая новость – основные характеристики у телескопа такие же как у фотоаппарата, только называются немного иначе.

Вот их объяснение, в порядке важности:

Апертура: тоже, что и диафрагма у фотоапарата. Самая важная характеристика телескопа, некоторые даже считают, что единственная, которая вообще имеет значение для наблюдений. Понятие апертура относится к диаметру первой (наружной) линзы телескопа. Той, которая “улавливает” свет, идущий от космического объекта к наблюдателю.

С апертурой все просто – чем она больше, тем больше света сможет “собрать” и тем более слабый объект на небосклоне вы сможете наблюдать. Соответственно рекомендация может быть только одна – чем больше, тем лучше. Несмотря на то, что существуют различия в том как считается диаметр апертуры у разных брендов и типов телескопов, старайтесь выбрать ту модель в своем ценовом диапазоне, у которой апертура больше.

Увеличение: увеличение телескопа – это отношение между фокусным расстоянием окуляра и фокусным расстоянием вашего телескопа (о фокусном расстоянии я расскажу чуть ниже).

В большинстве современных телескопов, даже в любительских, окуляры сменные (уточните это у продавца), так что вы можете со временем заменить их более мощными

По этой причине имейте ввиду – именно увеличение телескопа, это та характеристика, которую затем можно изменить в лучшую сторону, правда с одной важной оговоркой

Поскольку увеличение зависит ещё и от фокусного расстояния телескопа, существует некий предел увеличения, которого может достичь ваш телескоп. Свыше этого, даже если вы будете использовать самые дорогие и супер-качественные окуляры, вы не получите лучшего изображения.

Чтобы рассчитать максимально полезное увеличение вашего телескопа, просто воспользуйтесь этим калькулятором.

Фокусное расстояние: с обывательской точки зрения , фокусное расстояние – это длина телескопа, т.е. расстояние между первой линзой “собирающей” свет и окуляром.

В отличие от апертуры, формула “чем больше – тем лучше” тут не работает, даже наоборот. Короткое фокусное расстояние означает более широкое поле зрения (т.е. область неба, которую вы можете наблюдать в один момент), в то время как длинное фокусное расстояние означает, что поле вашего зрения будет узким (сложнее найти нужный объект), но в то же время при наведении на объект – вы увидите у него больше деталей.

Нельзя сказать какой из вариантов хуже или лучше, скорее все зависит от наблюдателя. Для астрономов-любителей и детей, как правило, рекомендуется выбирать модели с большим фокусным расстоянием, так как вы в основном будете смотреть на Луну и соседние с Землей планеты, и длиннофокусный вариант позволит вам увидеть на них больше деталей.

Схема любительского телескопа-рефрактора, чтоб было понятнее что от чего зависит

Как движется телескоп

Следует потренироваться перемещать свой телескоп, не выходя из хорошо освещенного дома. Независимо от типа крепления, позиционные корректировки выполняются аналогичным образом.

В случае с некомпьютеризированными креплениями телескопа:

  1. Начать с ослабления фиксирующих ручек на высоте и азимуте (для альт-азимутальных креплений) или на осях прямого подъема и отклонения (для экваториальных креплений).
  2. Взяться за оптическую трубку, толкнуть или потянуть ее в нужном направлении.
  3. Заблокировать телескоп, чтобы он не двигался сам по себе.

Этот метод используется для больших, широких движений по небу. Для более инкрементальных перемещений ручные крепления должны иметь один или два кабеля или ручки «замедленного управления».

В случае с компьютеризированной монтировкой телескопа Go To:

  1. Использовать прилагаемый ручной контроллер для перемещения телескопа.
  2. Выбрать скорость нарастания в зависимости от того, как далеко нужно переместить телескоп по небу. Более высокие скорости используются для перемещения от одного объекта к другому, а более медленные скорости используются для центрирования объекта или удержания его в окуляре. Нужно потратить некоторое время, чтобы испытать эти скорости, поэкспериментировать с кнопками направления на ручном контроллере и понять, как пользоваться телескопом такого типа.

Основные правила для пользователя

Помимо моментов, описанных в инструкции, есть основные правила, которые важно знать каждому владельцу любого телескопа. Если у инструмента не установлен профессиональный солнечный фильтр на его лицевой части, то с его помощью ни в коем случае нельзя смотреть на Солнце

Это может привести к серьезному повреждению глаз и дальнейшему ухудшению зрения. Также запрещено проектировать Солнце на какую-либо другую поверхность, иначе в результате внутреннего нагрева могут испортиться некоторые важные оптические элементы устройства

Если у инструмента не установлен профессиональный солнечный фильтр на его лицевой части, то с его помощью ни в коем случае нельзя смотреть на Солнце. Это может привести к серьезному повреждению глаз и дальнейшему ухудшению зрения. Также запрещено проектировать Солнце на какую-либо другую поверхность, иначе в результате внутреннего нагрева могут испортиться некоторые важные оптические элементы устройства.

Если телескопом пользуется маленький ребенок, то не рекомендуется оставлять его без надзора взрослых.

Космический телескоп «Хаббл»

Телескоп «Хаббл», названный в честь Эдвина Хаббла, был запущен на орбиту 24 апреля 1990 года. Это совместный проект NASA и Европейского космического агентства, задуманный как обсерватория общего назначения для исследования Вселенной в видимом, ультрафиолетовом и инфракрасном диапазонах волн. Входит в число NASA.

Телескоп «Хаббл»

(Фото: NASA)

20 мая 1990 года телескоп сделал первую фотографию звездного скопления NGC 3532.

Слева — снимок, сделанный из обсерватории Лас Кампанас, Чили. Справа — часть первого изображения «Хаббла»

(Фото: NASA, ESA, and STScI)

«Хаббл» вращается вокруг Земли на высоте около 540 км и наклонен на 28,5 градусов к экватору. Чтобы совершить один оборот, ему требуется 95 минут.

Орбитальный телескоп провел более 1 млн наблюдений и предоставил данные, которые астрономы использовали, чтобы написать свыше 18 тыс. рецензируемых научных публикаций (от формирования планет до гигантских черных дыр). Эти документы упоминались в других публикациях более 900 тыс. раз.

Чем известен «Хаббл»

  • Благодаря изучению пульсирующих звезд удалось определить возраст нашей Вселенной — 13,8 млрд лет.
  • В январе 1992 года астрономы подтвердили существование планет за пределами солнечной системы.
  • Телескоп зафиксировал редкое явление — столкновение кометы Шумейкера-Леви 9 с Юпитером в 1994 году. Это первые в истории фотографии столкновения двух объектов Солнечной системы.

Серия снимков, сделанных с помощью космического телескопа «Хаббл» NASA, показывает эволюцию области падения кометы Шумейкера-Леви

(Фото: H. Hammel, MIT and NASA)

  • Телескоп детально зафиксировал эволюцию погоды Юпитера, в том числе редкий шторм возле экватора планеты.
  • «Хаббл» показал Плутон впервые с момента открытия планеты в 1930 году.
  • Аппарат сфотографировал шлейф газа и пыли высотой 400 км в результате извержения вулкана Ио, самой большой внутренней луны Юпитера.

Изображения сделаны 14 февраля 2007 года. На левом видны оранжевые овальные отложения серы вокруг вулкана Пеле. На правом изображении виден большой шлейф, поднимающийся над поверхностью, недалеко от северного полюса

(Фото: NASA, ESA, and J. Spencer (SwRI))

  • Подтвердил предположения о наличии сверхмассивных черных дыр в ядрах Галактик.
  • Нашел самый далекий из известных на сегодня космических объектов — галактику GN-z11. Сейчас мы видим ее такой, какой она была 13,4 млрд лет назад.

Галактика GN-z11, показанная на вставке, видна в прошлом на 13,4 млрд лет, всего через 400 млн лет после Большого взрыва, когда возраст Вселенной составлял всего 3% от ее нынешнего возраста. Учитывая расширение Вселенной, сейчас на деле она находится в 32 млрд световых лет от нас

(Фото: NASA, ESA, P. Oesch (Yale University))

  • Подтвердил существование на спутнике Юпитера Ганимеде огромного подземного океана под 150-километровой толщей льда. На основании этого открытия астрономы внесли крупнейший спутник в Солнечной системе в список возможных кандидатов на поиск жизненных форм.
  • Обнаружил водяной пар на экзопланете K2-18b из обитаемой зоны, а также первую подтвержденную межзвездную комету 2I/Borisov.

13 июня 2021 года компьютер, отвечающий за научное оборудование «Хаббла», перестал реагировать на команды с Земли. Устранить поломку инженерно-научной группе, обслуживающей телескоп, удалось только к 16 июля 2021 года.

У орбитального «Хаббла» есть два аккаунта в Twitter — Hubble NASA и Hubble ESA, два официальных YouTube канала — NASA и ESA, а также аккаунты в Instagram и .

Посвященный «Хабблу» ролик NASA

Изображения и данные, полученные с космического телескопа «Хаббл», показывают галактики такими, какими они были миллиарды лет назад.