Альфа-частицы

Ионизирующее излучение

Всё это- не фрагмент бреда сумасшедшего, взятый из истории его болезни и не краткий синопсис очередного голливудского боевика. Это окружающая нас реальность, которая называется радиоактивное или ионизирующее излучение, если коротко — радиация.

Явление радиоактивности в общих чертах было сформулировано французским физиком А. Беккерелем в 1896 году. Конкретизировал это явление и более подробно описал Э. Резерфорд в 1899 году. Именно он смог установить, что радиоактивное излучение неоднородно по своей природе и состоит, как минимум, из трёх видов лучей. Эти лучи по-разному отклонялись в магнитном поле и поэтому получили разное название. Проникающая способность альфа, бета и гамма-излучения различна.

Альфа-лучи

В магнитном поле они отклоняются так же, как и и положительно заряженные частицы. В дальнейшем было выяснено что это тяжёлые, положительно заряженные ядра атомов гелия. Возникают при распаде более сложных атомных ядер, например, урана, радия или тория. Обладают большой массой и относительно низкой скоростью излучения. Это обуславливает их невысокую проникающую способность. Они не могут проникнуть даже сквозь лист бумаги.

Но при этом альфа-частицы обладают очень большой ионизирующей энергией, что является причиной их способности наносить очень серьёзные повреждения на клеточном уровне. Из всех видов лучей именно альфа характеризуются самыми тяжёлыми последствиями в случае их воздействия на организм.

Это разрушающее влияние случается только в случае непосредственного контакта с предметами, излучающими альфа-лучи. На практике это происходит в результате попадания радиоактивных элементов внутрь организма через желудочно-кишечный тракт при приёме пищи или воды, а также при вдыхании воздуха, насыщенного радиоактивной пылью. Кроме того альфа-частицы могут легко проникнуть в организм через повреждения кожных покровов. Разносясь с током крови по всему организму, они обладают способностью накапливаться, оказывая сильнейшее разрушающее воздействие в течение многих лет.

Необходимо иметь в виду, что попадающие в организм радиоактивные вещества, не выводятся из него самостоятельно. Человеческий организм практически никак не защищён от подобного рода проникновений. Он не может нейтрализовать, переработать, усвоить или вывести самостоятельно радиоактивный изотоп, попавший внутрь.

Читать также Опасность радиации для жизни и ее угроза для здоровья человека

Бета-лучи

Отклоняются в ту же сторону что и отрицательно заряженные частицы. Источником бета-излучения являются внутриядерные процессы, связанные с превращением протона в нейтрон и наоборот- нейтрона в протон. При этом происходит излучение электрона или позитрона. Скорость распространения довольно высокая и приближается к скорости света. Бета-излучение обладает гораздо большей проникающей способностью, чем альфа-излучение, но ионизирующее воздействие выражено гораздо слабее.

Бета-излучение легко проникает сквозь одежду, но тонкий лист металла или средней толщины деревянный брусок полностью останавливают его. В отличие от альфа-излучения, бета-лучи способны наносить дистанционное поражение на расстоянии нескольких десятков метров от источника радиации.

Гамма- лучи

Эти лучи оказались нейтрально заряженными и никак не отклонялись в магнитном поле. Гамма-излучение представляет собою электромагнитную энергию, излучаемую в виде фотонов. Эта энергия освобождается в момент изменения энергетического состояния ядра атома.

Данный вид излучения характеризуется высокой скоростью, равной скорости света и крайне высокой проникающей способностью. Чтобы остановить гамма-излучение необходимы толстые бетонные стены. Парадокс состоит в том, что данный вид лучей менее всего способен оказывать разрушающее действие на организм. Их ионизирующее воздействие в сотни раз слабее бета-излучения и в десятки тысяч раз слабее альфа-излучения. Но способность преодолевать значительные расстояния и высокие проникающие свойства делают эти лучи потенциально наиболее опасными для человека. Поэтому остановимся на этом виде излучения более подробно.

Физика альфа-распада

Процесс распада

Альфа-спектр изотопов плутония 242 Pu, 239 Pu / 240 Pu и 238 Pu. Размытие (хвост) каждого пика на его низкоэнергетической (левой) стороне вызвано потерей энергии из-за неупругих столкновений альфа-частиц внутри образца. Альфа-частица — это ядро атома гелия-4, это двухвалентный катион гелия. Он состоит из двух протонов и двух нейтронов . При альфа-распаде массовое число ядра уменьшается на четыре единицы, атомное число — на две единицы. Если X обозначает материнский нуклид, а Y — дочерний нуклид, энергию, выделяемую при распаде, и если массовые числа написаны вверху, а порядковые числа внизу, то к альфа- распаду в целом применимо следующее: ΔЭ.{\ displaystyle \ Delta E}А.{\ displaystyle A}Z{\ displaystyle Z}

ZА.Икс→Z-2А.-4-йY+24-йЧАСе+ΔЭ.{\ displaystyle {} _ {Z} ^ {A} \ mathrm {X} \ to {} _ {Z-2} ^ {A-4} \ mathrm {Y} + {} _ {2} ^ {4} \ mathrm {He} + \ Delta E}.

Конкретный пример:

62146С.м→ 60142Nd+24-йЧАСе+2,529М.еV{\ Displaystyle {} _ {\ 62} ^ {146} \ mathrm {Sm} \ to {} _ {\ 60} ^ {142} \ mathrm {Nd} + {} _ {2} ^ {4} \ mathrm {He} +2 {,} 529 \, \ mathrm {МэВ}}.

Альфа-частица покидает ядро ​​со скоростью от 10 000 до 20 000 км / с, что соответствует кинетической энергии в несколько МэВ . Первоначальный избыток электронов в дочернем атоме, который создается, уменьшается за счет отдачи распада и взаимодействия (баланса заряда) с окружающей материей.

Энергетический спектр

Кулоновская стена . Модельный потенциал для альфа-частицы, который состоит из короткодействующего остовного потенциала, аппроксимируемого потенциальной ямой, и дальнодействующего кулоновского потенциала.

Как и любой радиоактивный распад, альфа-распад высвобождает определенное количество энергии. Он соответствует массе, которая теряется из- за дефекта массы в процессе. Эта энергия проявляется как кинетическая энергия альфа-частицы и дочернего ядра; В некоторых случаях часть энергии может сначала оставаться в возбужденном состоянии дочернего ядра, а затем рассеиваться в виде гамма-излучения . Кинетическая энергия распределяется между двумя частицами обратно пропорционально их массам (см. Кинематику (процессы частиц) ). Следовательно, альфа-частицы, испускаемые данным нуклидом, имеют, в отличие, например, от бета-распада, только очень определенные значения кинетической энергии , т. Е. то есть его энергетический спектр представляет собой линейчатый спектр . Этот спектр характерен для соответствующего радионуклида. Следовательно, его измерение можно использовать для определения этого нуклида. Э.знак равномc2{\ displaystyle E = mc ^ {2}}

Кулоновская стена, туннельный эффект

С одной стороны, альфа-частица притягивается сильным взаимодействием , но в то же время она электрически отталкивается за счет одноименных зарядов. Более сильное ядерное взаимодействие имеет короткий радиус действия, более слабое электростатическое отталкивание — большой радиус действия. Следовательно, потенциал образует своего рода барьер, Кулоновскую стену . Стенка превышает кинетическую энергию, доступную для альфа-частицы. Согласно классической физике, альфа-частица должна быть стабильно связана в ядре; однако он может покинуть его с помощью квантово-механического туннельного эффекта . Вероятность в единицу времени для этого может быть очень маленькой. Он определяет период полураспада распада. Наблюдаемая взаимосвязь между периодом полураспада и энергией испускаемых альфа-частиц описывается правилом Гейгера-Наттолла .

Радионуклиды с альфа-распадом

Типичными альфа-излучателями, встречающимися в природе, являются уран и торий, а также продукты их распада радий и радон . Кинетическая энергия альфа-частицы обычно составляет от 2 до 5 МэВ . Однако альфа-частицы из искусственно созданных нуклидов могут иметь энергию более 10 МэВ. Альфа-энергии и периоды полураспада отдельных нуклидов можно найти в списке изотопов и они представлены на картах нуклидов .

Согласно формуле массы Бете-Вайцзеккера, альфа-распад приводит к выделению положительной энергии для всех нуклидов с массовым числом 165, потому что сумма масс альфа-частицы и дочернего ядра, вычисленная таким образом, меньше, чем масса материнское ядро. Однако у многих тяжелых нуклидов альфа-распад никогда не наблюдался. Однако в последние несколько десятилетий некоторые нуклиды, которые ранее считались стабильными, были «обнажены» как чрезвычайно долгоживущие альфа-излучатели, например, 149 Sm , 152 Gd и 174 Hf . Только в 2000-х годах альфа-распад с периодом полураспада в несколько триллионов лет также можно было обнаружить при 180 Вт и 209 Bi .

Что такое альфа-излучение и особенности

Чтобы понять, что такое альфа-радиация, нужно изучить особенности этого излучения.

Поток состоит из частиц, обладающих такими свойствами:

  1. Достаточно низкая стартовая скорость. Большая относительная масса негативно снижает способность частиц к движению.
  2. Способность к созданию 200000 пар ионов в 1 см³ вещества. Подобное возможно при соблюдении некоторых условий: отсутствие преград на пути движения, средняя температура воздуха +15°С, нормальное атмосферное давление.
  3. Небольшая продолжительность жизни. Связано это с тем, что ионизация требует больших энергетических затрат. При снижении скорости перемещения ионизирующая способность частицы резко возрастает.
  4. Путь движения частиц по воздуху, не превышающий 11 см (при благоприятных условиях). Жидкие и твердые среды препятствуют распространению альфа-лучей. Здесь они не могут пройти даже 1 мм.

История

Концепция водородоподобной частицы как составной части других атомов развивалась в течение длительного периода. Еще в 1815 году Уильям Праут предположил, что все атомы состоят из атомов водорода (которые он называл «протилами»), основываясь на упрощенной интерпретации ранних значений атомных весов (см . Гипотезу Праута ), которая была опровергнута, когда были получены более точные значения. измеряется.

Эрнест Резерфорд на первой Сольвеевской конференции , 1911 г.

Протон обнаружен в камере Вильсона изопропанола

В 1886 году Ойген Гольдштейн открыл канальные лучи (также известные как анодные лучи) и показал, что это положительно заряженные частицы (ионы), произведенные из газов. Однако, поскольку частицы из разных газов имели разные значения отношения заряда к массе (э / м), их нельзя было идентифицировать с одной частицей, в отличие от отрицательных электронов, обнаруженных Дж . Дж. Томсоном . Вильгельм Вин в 1898 году определил ион водорода как частицу с самым высоким отношением заряда к массе в ионизированных газах.

После открытия атомного ядра Эрнестом Резерфордом в 1911 году Антониус ван ден Брук предположил, что место каждого элемента в периодической таблице (его атомный номер) равно его ядерному заряду. Это было подтверждено экспериментально Генри Мозли в 1913 году с использованием рентгеновских спектров .

В 1917 году (в экспериментах, опубликованных в 1919 и 1925 годах) Резерфорд доказал, что ядро ​​водорода присутствует в других ядрах, результат обычно описывается как открытие протонов. Эти эксперименты начались после того, как Резерфорд заметил, что когда альфа-частицы выбрасываются в воздух (в основном азот), его сцинтилляционные детекторы показывают характерные черты типичных ядер водорода как продукта. После экспериментов Резерфорд проследил реакцию на азот в воздухе и обнаружил, что когда альфа-частицы вводились в чистый газообразный азот, эффект был сильнее. В 1919 году Резерфорд предположил, что альфа-частица просто выбила протон из азота, превратив его в углерод. После наблюдения изображений камеры Вильсона Блэкетта в 1925 году Резерфорд понял, что альфа-частица поглощается. После захвата альфа-частицы ядро ​​водорода выбрасывается, так что в результате получается тяжелый кислород, а не углерод, т.е. Z не уменьшается, а увеличивается (см. Начальную предложенную реакцию ниже). Это было впервые сообщили ядерная реакция , 14 N + α → 17 O + р. Резерфорд сначала подумал о нашем современном «p» в этом уравнении как об ионе водорода H +.

В зависимости от точки зрения, 1919 год (когда экспериментально считалось, что он получен из другого источника, кроме водорода) или 1920 год (когда он был признан и предложен как элементарная частица) можно рассматривать как момент, когда протон был «открыт».

Резерфорд знал, что водород является самым простым и легким элементом, и на него повлияла гипотеза Праута о том, что водород является строительным блоком всех элементов. Открытие того, что ядро ​​водорода присутствует в других ядрах как элементарная частица, привело Резерфорда к тому, чтобы дать ядру водорода H + особое имя как частица, поскольку он подозревал, что водород, самый легкий элемент, содержит только одну из этих частиц. Он назвал этот новый фундаментальный строительный блок ядра протоном в честь среднего единственного числа греческого слова, означающего «первый», πρῶτον. Однако Резерфорд также имел в виду слово « протил», использованное Праутом. Резерфорд выступил на заседании Британской ассоциации содействия развитию науки на ее заседании в Кардиффе, начавшемся 24 августа 1920 года. Резерфорд первым предположил (ошибочно, см. Выше), что эта реакция азота была 14 N + α → 14 C + α + H +. На встрече Оливер Лодж попросил его дать новое название положительному ядру водорода, чтобы его не путали с нейтральным атомом водорода. Первоначально он предлагал и протон, и прутон (после Праута). Позже Резерфорд сообщил, что собрание приняло его предложение назвать ядро ​​водорода «протоном», следуя слову Праута «протил». Первое употребление слова «протон» в научной литературе появилось в 1920 году.

Корпускулярное испускание. Альфа-частицы

Данный вид представляет собой поток радиоактивных элементов, чья масса отлична от нуля. Примером является альфа и бета-излучение, а также электронное, нейтронное, протонное и мезонное. Альфа-частицы — это ядра атомов, которые испускаются при распаде некоторых радиоактивных атомов. Они состоят их двух нейтронов и двух протонов. Альфа-излучение – это ядра атомов гелия, которые положительно заряжены. Естественное испускание характерно для неустойчивых радионуклидов рядов тория, урана. Альфа-частицы выходят из ядра со скоростью до 20 тысяч км/сек. По пути движения они образуют сильную ионизацию среды, отрывая электроны из орбит атомов. Ионизация лучами приводит к химическим изменениям в веществе, а также к нарушению ее кристаллической структуры.

Почему происходит альфа-распад?

В Альфа-распаде важную роль играют два фундаментальных взаимодействия: ядерная сила (ближняя) и электромагнитная сила (дальняя). Сила притяжения ядерных сил (действующих между нейтронами) намного больше, чем сила отталкивания электромагнитных сил (действующих между протонами). Таким образом, ядерная сила удерживает атомное ядро вместе.

Однако, когда общая разрушительная электромагнитная сила преодолевает ядерную, атомное ядро распадается на две или более частей. Исследования показывают, что ядро, содержащее более 209 нуклонов, настолько велико, что электромагнитное отталкивание между его протонами часто побеждает притягивающую ядерную силу, удерживающую его.

Это происходит потому, что сила ядерной силы быстро падает за пределы одного фемтометра, в то время как электромагнитная сила сохраняет такую ​​же силу на больших расстояниях.

Классическая физика не позволяет альфа-частицам избегать сильных ядерных сил внутри ядра. Квантовая механика, однако, позволяет альфа-частицам убегать через квантовое туннелирование, даже если они не обладают достаточной энергией для преодоления ядерной силы.

Источники альфа-частиц

Альфа-распад

Физик наблюдает альфа-частицы от распада источника полония в камере Вильсона.

Альфа-излучение обнаружено в камере Вильсона изопропанола (после введения искусственного источника радона-220).

Наиболее известным источником альфа — частиц альфа — распад более тяжелых (> 106 ¯u атомных вес) атомов. Когда атом испускает альфа-частицу в альфа-распаде, массовое число атома уменьшается на четыре из-за потери четырех нуклонов в альфа-частице. Атомный номер атома идет вниз на два, в результате потери двух протонов — атом становится новым элементом. Примерами такого рода трансмутации ядер в результате альфа-распада являются распад урана в торий и радия в радон .

Альфа-частицы обычно испускаются всеми более крупными радиоактивными ядрами, такими как уран , торий , актиний и радий , а также трансурановыми элементами. В отличие от других типов распада, альфа-распад как процесс должен иметь атомное ядро ​​минимального размера, которое может его поддерживать. Самые маленькие ядра, имеющие до настоящего времени было установлено, что способен альфа — излучения являются бериллий-8 и наиболее легкие нуклиды из теллура (элемент 52), с массовыми числами между 104 и 109. альфа — распад иногда оставляет ядро в возбужденном состоянии; затем излучение гамма-излучения удаляет избыточную энергию .

Механизм образования при альфа-распаде

В отличие от бета-распада , фундаментальные взаимодействия, ответственные за альфа-распад, представляют собой баланс между электромагнитной силой и ядерной силой . Альфа-распад является результатом кулоновского отталкивания между альфа-частицей и остальной частью ядра, оба из которых имеют положительный электрический заряд , но сдерживаются ядерными силами . В классической физике альфа-частицы не обладают достаточной энергией, чтобы покинуть потенциальную яму из-за сильного взаимодействия внутри ядра (эта яма включает в себя уход от сильной силы, поднимающейся вверх по одной стороне ямы, за которой следует электромагнитная сила, вызывающая отталкивающую силу). отталкивание с другой стороны).

Однако эффект квантового туннелирования позволяет альфам ускользать, даже если у них недостаточно энергии для преодоления ядерной силы . Это допускается волновой природой материи, которая позволяет альфа-частице проводить некоторое время в области, настолько далекой от ядра, что потенциал отталкивающей электромагнитной силы полностью компенсирует притяжение ядерной силы. С этого момента альфа-частицы могут улетать.

Тройное деление

Альфа-частицы с особой энергией, образующиеся в результате ядерного процесса, образуются в относительно редком (один из нескольких сотен) процессе ядерного деления — тройном делении . В этом процессе из события создаются три заряженных частицы вместо обычных двух, причем наименьшая из заряженных частиц, наиболее вероятно (с вероятностью 90%), является альфа-частицей. Такие альфа-частицы называются «альфа-частицами дальнего действия», поскольку при их типичной энергии 16 МэВ они имеют гораздо более высокую энергию, чем когда-либо производились в результате альфа-распада. Тройное деление происходит как при нейтронно-индуцированном делении ( ядерная реакция, которая происходит в ядерном реакторе), так и когда делящиеся и делящиеся нуклиды актинидов (т. Е. Тяжелые атомы, способные к делению) подвергаются спонтанному делению в форме радиоактивного распада. Как в индуцированном, так и в спонтанном делении более высокие энергии, доступные в тяжелых ядрах, приводят к дальнодействующим альфа с более высокой энергией, чем у альфа-распада.

Ускорители

Энергичные ядра гелия (ионы гелия) могут быть получены на циклотронах , синхротронах и других ускорителях частиц . Принято считать, что их обычно не называют «альфа-частицами».

Реакции солнечного ядра

Как уже отмечалось, ядра гелия могут участвовать в ядерных реакциях в звездах, и иногда исторически их называют альфа-реакциями (см., Например, тройной альфа-процесс ).

Кроме того, ядра гелия чрезвычайно высоких энергий, которые иногда называют альфа-частицами, составляют от 10 до 12% космических лучей . Механизмы образования космических лучей продолжают обсуждаться.

Источники излучений

  1. Закрытые. При работе с ними излучение не проникает в окружающую среду. Примером будет являться радиационная техника на АЭС, а также аппаратура в рентген-кабинете.
  2. Открытые. В этом случае облучению подвергается окружающая среда. Источниками могут быть газы, аэрозоли, радиоактивные отходы.

Элементы ряда урана, актиния и тория являются естественными радиоактивными элементами. При их распаде происходит излучение альфа-, бета-частиц. Источниками альфа–лучей является полоний с атомной массой 214 и 218. Последний представляет собой продукт распада радона. Это ядовитый в больших количествах газ, который проникает из почвы и накапливается в подвалах домов.

Радиоактивные превращения. Альфа- и бета-распад

Подробности
Просмотров: 549

Э. Резенфорд вместе с с английским радиохимиком Ф. Содди доказал, что радиоактивность сопровождается самопроизвольным превращением одного химического элемента в другой.
Причем в результате радиоактивного излучения изменения претерпевают ядра атомов химических элементов.

ОБОЗНАЧЕНИЕ ЯДРА АТОМА

ИЗОТОПЫ

Среди радиоактивных элементов были обнаружены элементы, неразличимые химически, но разные по массе. Эти группы элементов были названы «изотопами» («занимающими одно место в
табл. Менделеева») . Ядра атомов изотопов одного и того же химического элемента различаются числом нейтронов.

В настоящее время установлено, что все химические элементы имеют изотопы.
В природе все без исключения химические элементы состоят из смеси нескольких изотопов, поэтому в таблице Менделеева атомные массы выражены дробными числами.
Изотопы даже нерадиоактивных элементов могут быть радиоактивны.

АЛЬФА — РАСПАД

-альфа-частица (ядро атома гелия)
— характерен для радиоактивных элементов порядковым номером больше 83
.- обязательно выполняется закон сохранения массового и зарядового числа.
— часто сопровождается гамма-излучением.

Реакция альфа-распада:

При альфа-распаде одного химического элемента образуется другой химический элемент, который в таблице Менделеева расположен на 2 клетки ближе к её началу, чем исходный.

Физический смысл реакции:
в результате вылета альфа-частицы заряд ядра уменьшается на 2 элементарных заряда и образуется новый химический элемент.

Правило смещения:

При бета-распаде одного химического элемента образуется другой элемент, который расположен в таблице Менделеева в следующей клетке за исходным (на одну клетку ближе к концу таблицы).

БЕТА — РАСПАД

— бета-частица (электрон).
— часто сопровождается гамма-излучением.
— может сопровождаться образованием антинейтрино ( легких электрически нейтральных частиц, обладающих большой проникающей способностью).
— обяэательно должен выполняться закон сохранения массового и зарядового числа.

Реакция бета-распада:

Физический смысл реакции:
нейтрон в ядре атома может превращаться в протон, электрон и антинейтрино, в результате ядро излучает электрон.

Правило смещения:

ДЛЯ ТЕХ, КТО ЕЩЁ НЕ УСТАЛ

Предлагаю написать реакции распада и сдать работу.( составьте цепочку превращений)

1. Ядро какого химического элемента является продуктом одного альфа-распада и двух бета-распадов ядра данного элемента ?

2.Ядро изотопа висмута получилось из другого ядра после одного альфа-распада и одного бета-распада.

Что это за ядро?

Следующая страница «Состав атомного ядра. Ядерные силы»

Назад в раздел «9 класс»

Строение атома — Класс!ная физика

Радиоактивность —
Радиоактивные превращения —
Состав атомного ядра. Ядерные силы —
Энергия связи. Дефект масс —
Деление ядер урана —
Ядерная цепная реакция —
Ядерный реактор —
Термоядерная реакция

История открытия

На рубеже XIX-XX веков два физика с мировым именем открыли существование альфа-частиц. Это были новозеландский физик Эрнест Резерфорд, который работал в Канаде в городе Монреале, и французский химик и физик Поль Вийяр, который ставил свои эксперименты в Париже. Эти два ученых изучали различные виды радиации по их свойствам проникать через различные среды, а также по их взаимодействию с искусственным магнитным полем.

В результате этих экспериментов Резерфорд выделил три типа радиоактивного излучения: альфа, бета и гамма. Альфа-лучи были определены как лучи, имеющие наименьшую проникающую способность через различные предметы среди изучаемых видов радиации.