Названия космических объектов

Ближайшие к нам чёрные дыры

Наш родной Млечный путь относится учёными к спиралевидным галактикам. Ещё древние римляне именовали её «молочной дорогой», так как с нашей планеты она имеет соответствующий вид белой туманности, распростёртой на небе в черноте ночи. А греки придумали целую легенду о появлении данного скопления звёзд, где оно представляет собой брызнувшие из грудей богини Геры молоко.

Как и у многих других галактик, существующая в центре Млечного пути чёрная дыра является сверхмассивным образованием. Называют её «Стрелец А-звезда». Это настоящее чудовище, которое буквально пожирает собственным гравитационным полем всё вокруг себя, скапливая в своих пределах огромные массы вещества, количество которого постоянно прибывает. Однако, близлежащая область именно по причине существования в ней указанной втягивающей воронки оказывается очень удачным местом для появления новых звёздных образований.

«Самоубийство» астероида

Космический телескоп «Хаббл» недавно стал очевидцем очень редкого космического явления — спонтанного разрушения астероида. Обычно к такому стечению обстоятельств приводят космические столкновения или же слишком близкое приближение к более крупным космическим телам. Однако разрушение астероида P/2013 R3 под воздействием солнечного света оказалось для астрономов несколько неожиданным явлением. Нарастающее воздействие солнечного ветра привело к вращению R3. В какой-то момент это вращение достигло критической точки и разломило астероид на 10 крупных кусков весом около 200 000 тонн. Неторопливо отдаляющиеся друг от друга со скоростью 1,5 километра в секунду куски астероида выбросили невероятное количество мелких частиц.

Очень большие звезды

Наше Солнце (?) по размерам в 109 раз больше Земли и занимает 99% от всей массы Солнечной системы. Если поставить рядом Солнце и Землю, то мы даже не сразу увидим этой крошечной точки.

Теперь можете себе представить такой объект, который больше нашего светила в 1500 раз. Звезда под названием VY Большого Пса является одной из самых ярких и имеет диаметр около 1,9 миллиарда километров и находится в 3900 световых лет от нас.

По некоторым данным, радиус этой звезды может достигать 2100?. А это значит, что если бы она находилась на месте нашего светила, своим объёмом она бы заполнила орбиту Сатурна, которая в 9 раз превышает орбиту Земли. Для примера скажем, если бы диаметр VY Большого Пса был 28 метров (высота 9-этажного дома), то диаметр Солнца в таком случае был бы около 1,5 сантиметров. Удивительно, но при таких размерах, звезда имеет массу в 17?.

Кстати, о самых красивых и необычных звездах во Вселенной, на нашем сайте most-beauty.ru есть интересная статья.

3

Как черная дыра вас убьет


Черные дыры настолько массивны, что материал начинает вести себя странно в непосредственной близости к ним. Можно представить, что быть втянутым в черную дыру — значит провести остаток вечности (или истратить оставшийся воздух), безнадежно крича в туннеле пустоты. Но не переживайте, чудовищная гравитация лишит вас этой безнадежности. Сила гравитации тем сильнее, чем ближе вы к ее источнику, а когда источник представляет собой такое мощное тело, величины могут серьезно меняться даже на коротких дистанциях — скажем, высота человека. Если вы упадете в черную дыру ногами вперед, сила гравитации, воздействующая на ваши ноги, будет настолько сильной, что вы увидите, как ваше тело вытягивается в спагетти из линий атомов, которые затягиваются в самый центр дыры. Мало ли, вдруг эта информация будет для вас полезной, когда вы захотите нырнуть в чрево черной дыры.

Самый необычный астероид

Это единственный известный астероид, который одновременно делит с планетой одну орбиту

Большинство объектов, находящихся внутри Солнечной системы, двигаются вокруг Солнца по часовой стрелке, сохраняя направление движения согласно направлению движения огромного диска из пыли и газа, который их породил. Однако небольшой астероид 2015 BZ509, делящий одну орбиту с Юпитером, двигается в противоположную сторону. Это единственный известный астероид, который одновременно делит с планетой одну орбиту и при этом имеет противоположное направление движение по ней.

На самом деле этот астероид должен был быть выброшенным из Солнечной системы уже давным-давно. Из-за своего ретроградного движения ему приходится идти навстречу Юпитеру, чья гравитационная сила дважды оказывает воздействие на астероид за один орбитальный пролет. Однако крошечный BZ обладает диаметром всего 3 километра, а его орбитальный путь пролегает таким образом, что в рамках одного оборота астероид находится снаружи орбиты Юпитера, а другого – внутри. Это позволяет компенсировать гравитационное притяжение планеты и сохранять относительно стабильную траекторию движения в течение нескольких миллионов лет.

Обозначение звезд в наши дни

В настоящее время звезды уже никто не называет красивыми словами, пришедшими к нам, например, из мифологии. Ученые всех стран мира присваивают таким новооткрытым космическим объектам цифровой код. Подобное явление вполне объяснимо — с развитием оптики и из-за создания новых мощных телескопов стало возможным увидеть даже небольшие скопления звезд, находящихся в удаленных галактиках. Давать каждому из обнаруженных объектов новое оригинальное название стало практически невозможным, да и бессмысленным, ведь список пополняется практически постоянно, и вряд ли в ближайшее время данная ситуация изменится.

Однако даже из этого правила есть исключение. В космонавтике звезды используются для той же навигации. И для того чтобы лучше запомнить каждую из нужных точек, астронавты, сотрудники НАСА и РосКосмоса нередко дают им прозвища. Случается и так, что именно эти придуманные имена запоминаются и начинают активно использоваться. Также есть и еще одна традиция астрономии — нередко только что открытые объекты называют в честь того, кто впервые их обнаружил, или же в честь выдающихся ученых. Так появились звезды Кшеминского и Моисеева. Конечно, официально академическое сообщество не признает таких названий, но в научно-популярной литературе, да и обиходе, они используются очень часто.

Официально давать имена космическим объектам может только МАС. Эта организация активно опровергает слухи, что якобы можно приобрести специальный сертификат и самостоятельно назвать какую-либо звезду. Эта организация также составляет и обновляет списки космических объектов. Существует два типа подобных документов по звездам.

  1. Алфавитный указатель имен.
  2. Указатель имен, разбитый согласно созвездиям.

Редкое явление, которое помогло решить загадку космической пыли

Стратосферная обсерватория ИК-астрономии (SOFIA) аэрокосмического агентства NASA установлена прямо на борту модернизированного самолета Boeing 747SP и предназначена для изучения различных астрономических событий. На высоте 13 километров над поверхностью Земли содержится меньше атмосферного водяного пара, который бы создавал помехи в работе инфракрасного телескопа.

Недавно телескоп SOFIA помог астрономам решить одну из космических загадок. Наверняка многие из вас, смотревшие различные передачи о космосе, знают, что все мы, как и все во Вселенной, состоит из звездной пыли, а точнее из тех элементов, из которых она же и состоит. Однако ученые долго не могли понять, как эта звездная пыль не испаряется под воздействием сверхновых звезд, которые разносят ее через всю Вселенную.

Рассматривая своим инфракрасным глазом сверхновую звезду Sagittarius A East возрастом 10 000 лет, телескоп SOFIA обнаружил, что собирающиеся плотные области из газа вокруг звезды играют своего рода роль подушек, отталкивающих частицы космической пыли, защищая их от воздействия выделенного при взрыве тепла и ударной волны.

Даже если 7-20 процентов космической пыли смогло пережить встречу с Sagittarius A East, то ее будет вполне достаточно для формирования около 7000 космических объектов размеров с Землю.

Белый карликовый пульсар

Размером он примерно с Землю, но при этом материи в нем содержится в 200 000 раз больше

Белые карлики, как правило, представляют собой мертвые остатки некогда солнцеподобных звезд. Однако систему AR Скорпиона можно внести в разряд уникальных исключений. Находящийся здесь белый карлик излучает потоки горячих радиоактивных лучей и по поведению скорее похож на более мощный пульсар.

Сама система AR Скорпиона является двойной системой звезд с красным карликом, примерно на треть массивнее нашего Солнца. От своего звездного компаньона он находится примерно в 1,4 миллиона километров. Орбитальный период обоих звездных объектов составляет всего 3,6 часа.

В сравнении со своей звездой-компаньоном красным карликом, AR Скорпиона просто монстр. Размером он примерно с Землю, но при этом материи в нем содержится в 200 000 раз больше. Карлик генерирует магнитное поле, которое в 100 миллионов раз мощнее земного, поэтому посылаемые им лучи проносятся над звездой-компаньоном, разгоняя электроны ее внешних слоев почти до световой скорости, создавая ослепительное световое шоу каждые две минуты.

Оптический телескоп «Сюньтянь»

Телескоп Китайской космической станции (CSST) «Сюньтянь» или «Небесный часовой» — автономный орбитальный модуль с оптическим телескопом.

Запуск «Сюньтянь» запланирован на 2024 год. Телескоп будет вращаться вокруг Земли по той же орбите, что и китайская модульная станция. Он сможет периодически приближаться и стыковаться с ней, чтобы экипаж проводил необходимый ремонт и менял приборы.

Телескоп «Сюньтянь»

(Фото: CSNA)

Огромная линза делает «Небесного часового» сопоставимым с «Хабблом». При этом обзор китайского телескопа будет в 300 раз больше при таком же высоком разрешении. Благодаря широкому полю зрения он сможет наблюдать до 40% пространства в течение десяти лет.

Телескоп Китайской космической станции будет вести наблюдение в ближнем ультрафиолетовом и видимом свете, а также исследовать свойства темной материи, формирование и эволюцию галактик.

Средний космос

Быстрее света в природе ничего не бывает (пока не известны такие источники), поэтому именно его скорость была взята за основу. Для объектов, ближайших к нашей планетной системе, и для удалённых от неё, принят за единицу путь, пробегаемый светом за один год. До границы Солнечной системы свет летит около двух лет, а до ближайшей звезды в Центавре 4,25 св. года. Всем известная Полярная звезда расположилась от нас на удалении в 460 св. лет.

Каждому из нас мечталось отправиться в прошлое или будущее. Путешествие в прошлое вполне возможно. Нужно лишь взглянуть в ночное звёздное небо – это и есть прошлое, далёкое и бесконечно далёкое.

Все космические объекты мы наблюдаем в их далёком прошлом, и чем дальше наблюдаемый объект, тем дальше в прошлое мы смотрим. Пока свет летит от далёкой звезды до нас, проходит столько времени, что возможно  в настоящий момент этой звезды уже не существует!

Наша галактика имеет размер в поперечнике 100 000 св. лет, а толщину около 1 000 св. лет. Представить такие расстояния невероятно трудно, а оценить их практически невозможно. Наша Земля, вместе со своим светилом и другими объектами Солнечной системы, обращается вокруг центра галактики, за 225 млн. лет, и делает один оборот за 150 000 св. лет.

Космическая рентгеновская обсерватория «Чандра»

Обсерватория «Чандра» — это телескоп, специально разработанный для обнаружения рентгеновского излучения из очень горячих районов Вселенной, таких как взорвавшиеся звезды, скопления галактик и материя вокруг черных дыр. Обсерватория получила свое имя в честь одного из крупнейших астрофизиков XX века Субрахманьяна Чандрасекара, известного своими работами о белых карликах. Входит в число Больших обсерваторий NASA.

Телескоп «Чандра»

(Фото: NGST)

Запуск состоялся 23 июля 1999 года. Предполагалось, что телескоп прослужит пять лет. В итоге «Чандра» стала самой продолжительной астрономической миссией без обслуживающих экспедиций.

На счету «Чандры» тысячи запечатленных космических объектов и явлений, которые помогли ученым лучше понять устройство нашей Вселенной и процессы, происходящие в ней. Телескоп показывает остатки взорвавшихся звезд, обнаруживает черные дыры по всей Вселенной, отслеживает отделение темной материи при столкновении галактик и многое другое.

Чем известна «Чандра»

Сделанный «Чандрой» первый снимок остатка сверхновой Кассиопея A показал астрономам загадочный источник в центре, который может быть быстро вращающейся нейтронной звездой или черной дырой.

Снимок остатка сверхновой Кассиопея A

(Фото: John Hughes et al. (Rutgers), NASA/CXC/SAO)

  • В Крабовидной туманности получилось различить ударные волны вокруг центрального пульсара, незаметные другим телескопам.
  • С помощью рентгеновской обсерватории «Чандра» ученые уточнили постоянную Хаббла — число, определяющее скорость расширения Вселенной.
  • При столкновении сверхскоплений галактик были получены доказательства существования темной материи.
  • Благодаря данным с телескопа ученые наблюдали крупнейшую из когда-либо обнаруженных рентгеновских вспышек сверхмассивной черной дыры в центре галактики Млечный Путь.

Сверхмассивная черная дыра Стрелец A * расположена в центре нашей галактики. По оценкам ученых, ее масса примерно в 4,5 млн раз больше массы нашего Солнца

(Фото: NASA)

  • Снимки, показывающие сильно искаженный остаток сверхновой, названный W49B, позволили ученым предположить присутствие в нем самой последней черной дыры, образовавшейся в галактике Млечный Путь.
  • В галактике M82 обнаружен новый тип черных дыр.

Следить за жизнью «Чандры» можно в , на YouTube-канале, а также в Instagram и .

Паранальская обсерватория

Фото: European Southern Observatory

Паранальскую обсерваторию открыли в 1999 году в Чили. Она входит в комплекс Европейской Южной обсерватории (ESO) — одной из старейших организаций по астрономическим исследованиям.

Вот тут можно посмотреть на обсерваторию по годам:

Обсерватория находится в Атакамской пустыне на высоте 2 635 м над уровнем моря, что эквивалентно высоте восьми Эйфелевых башен. Она оснащена несколькими телескопами, в число которых входит и один из самых мощных оптических инструментов наблюдения за космосом — Very Large Telescope. Он состоит из четырех телескопов с зеркалами диаметром 8,2 м и четырех подвижных вспомогательных телескопов диаметром 1,8 м. Все вместе они создают интерферометр, разделяющий пучки электромагнитного светового излучения. С помощью телескопа за один час наблюдений можно получить изображения небесных объектов в 30 звездных величин, что соответствует видимости объектов в 4 млрд раз тусклее, чем может увидеть человеческий глаз.

Видео телескопа

Этот телескоп уже внес огромный вклад в изучение космического пространства. С помощью него удалось получить первые изображения экзопланет, отследить движение звезд вокруг черной дыры и в 2005 году увидеть послесвечения самого дальнего из известных гамма-всплесков.

На территории обсерватории также есть резиденция для астрономов, работающих на станции. Внутри расположены огромный сад с бассейном, спортзал и ресторан. Там даже проходили съемки одного из фильмов про Джеймса Бонда — «Квант милосердия».

На сайте Европейской Южной обсерватории можно отправиться в виртуальное путешествие по территории с огромными телескопами.

Черная дыра Эридана

Hubble Deep Space Field — это снимок, полученный телескопом Хаббла, на котором запечатлены тысячи удаленных галактик. Однако, когда мы смотрим в «пустой» космос в области созвездия Эридан, мы ничего не видим. Вообще. Просто черную пустоту, растянувшуюся на миллиарды световых лет. Почти любые «пустоты» в ночном небе возвращают снимки галактик, хоть и размытых, но существующих. У нас есть несколько методов, которые помогают определить то, что может быть темной материей, но и они оставляют нас с пустыми руками, когда мы смотрим в пустоту Эридана.

Одна спорная теория говорит о том, что пустота содержит сверхмассивную черную дыру, вокруг которой вращаются все ближайшие галактические скопления, и это высокоскоростное вращение совмещается с «иллюзией» расширяющейся вселенной. Другая теория говорит о том, что вся материя когда-нибудь склеится вместе, образовав галактические скопления, а между скоплениями со временем образуются дрейфующие пустоты.

Но это не объясняет вторую пустоту, обнаруженную астрономами в южном ночном небе, которая на этот раз примерно 3,5 миллиарда световых лет в ширину. Она настолько широка, что ее с трудом может объяснить даже теория Большого Взрыва, поскольку Вселенная не существовала настолько долго, чтобы такая огромная пустота успела сформироваться путем обычного галактического дрейфа. Может, когда-нибудь все эти загадки мироздания станут просто семечками в стакане, но не сегодня и не завтра.

Расстояния до ближайших объектов

Мы мало задумываемся о расстояниях, когда смотрим прямые трансляции из дальних уголков земного шара. Телевизионный сигнал приходит к нам практически мгновенно. Даже с нашего спутника, Луны, радиоволны долетают до Земли за секунду с хвостиком. Но стоит заговорить об объектах более дальних, и тотчас приходит удивление. Неужели до такого близкого Солнца свет летит 8,3 минуты, а до ледяного Плутона – 5,5 часов? И это, пролетая за секунду почти 300 000 км! А для того, чтобы добраться к той же Альфе в созвездии Центавра, лучу света потребуется 4,25 года.

Даже для ближнего космоса не совсем годятся наши, привычные, единицы измерения. Конечно, можно проводить измерения в километрах, но тогда цифры будут вызывать не уважение, а некоторый испуг своими размерами. Для нашей Солнечной системы принято проводить измерения в астрономических единицах.

Теперь космические расстояния до планет и других объектов ближнего космоса будут выглядеть не так страшно. От нашего светила до Меркурия всего 0,387 а.е., а до Юпитера – 5,203 а.е. Даже до самой удалённой планеты – Плутона – всего 39,518 а.е.

До Луны расстояние определено с точностью до километра. Это удалось сделать, поместив на его поверхность уголковые отражатели, и применив метод лазерной локации. Среднее значение расстояния до Луны получилось 384 403 км. Но Солнечная система простирается гораздо дальше орбиты последней планеты. До границы системы целых 150 000 а. е. Даже эти единицы начинают выражаться в грандиозных величинах. Тут уместны другие эталоны измерений, потому что расстояния в космосе и размеры нашей Вселенной – за границами разумных представлений.

Изучение Солнечной системы

Долгое время человечество было убеждено, что все звёзды и планеты вращаются вокруг Земли. Система мира с неподвижной Землёй в центре была разработана греческим учёным Птолемеем во 2 веке до нашей эры и просуществовала более полутора тысяч лет. 

В 1453 году польский астроном Николай Коперник доказал, что Земля, как и другие планеты (на тот момент их было известно шесть), вращаются вокруг Солнца. Однако вплоть до XVII века церковь считала это учение ересью и боролась с его последователями. 

Одним из них был итальянский монах Джордано Бруно. В 1584 году он опубликовал исследование, в котором утверждал, что Вселенная бесконечна, а Солнце подобно остальным звёздам, просто находится гораздо ближе к Земле. Бруно был схвачен инквизицией и приговорён к сожжению на костре как еретик. 

Другим последователем Коперника стал итальянский учёный Галилео Галилей. Он создал первый телескоп, который позволил увидеть кратеры Луны, пятна на Солнце, открыть четыре спутника Юпитера и установить, что планеты вращаются вокруг своей оси. Чтобы не повторить судьбу Бруно, Галилей был вынужден отречься от своих идей.

В XVII веке немецкий астроном Иоганн Кеплер открыл законы движения планет — ему удалось установить связь между скоростью вращения планеты и её расстоянием от Солнца. Его идеи воспринял знаменитый английский физик Исаак Ньютон, создатель теории всемирного тяготения. 

В XVIII—XIX веках открытия в области оптики позволили создать более мощные телескопы, которые позволили учёным узнать больше о солнечной системе. Были открыты планеты Уран и Нептун. 

В 1951 году Советский Союз вывел на орбиту Земли первый искусственный спутник. С этого момента началась Космическая эра — эпоха практического изучения солнечной системы. 

В 1961 году Юрий Гагарин стал первым человеком, побывавшем в космосе, а в 1969 году космический корабль «Аполлон-11» доставил людей на Луну. 

В 1970-х годах Советский Союз и США запустили несколько десятков аппаратов для исследования Марса, Венеры и Меркурия, а запущенные в 1980-х аппараты «Вояджер-1» и «Вояджер-2» позволили получить данные о дальних планетах — Юпитере, Сатурне, Уране, Нептуне и их спутниках. Большую роль в изучении солнечной системы сыграл вывод на орбиту Земли космического телескопа «Хаббл» в 1990 году. 

В нынешнем десятилетии космические агентства разных стран планируют пилотируемый полёт на Марс. Экспедиция на другую планету станет величайшим событием в истории освоения солнечной системы. И всё же пока человечество находится в самом начале пути изучения космоса.

Войд Волопаса

Тип объекта: пустота

Пустота — это интригующее место. На самом деле не место, а пространство. Настолько огромное, поражающее воображение, буквально переполняющее его, если «пустота» может переполнить. Современная астрономия ежегодно делает множество поразительных открытий, в том числе и обнаруживаются большие пустые области в пространстве, которые называются «пустотами».

Что мы знаем о Войде Волопаса? Это пустота в космосе, шириной примерно 300 млн световых лет, находится в созвездии Волопаса. До центра этой области 700 млн световых лет. Сама пустота расположена непосредственно перед двумя известными скоплениями галактик в этом созвездии. Пустоту обнаружили в 1981 году ученые Роберт Киршнер, Август Омлер-младший, Пол Шехтер и Стивен Шектман. Осматривая три небольших участка неба в этом регионе, они заметили большую часть пространства, в которой не было галактик. В 1983 году было подтверждено, что это именно пустота. Карта Войда Волопаса была опубликована в исследовательской работе в 1987 году. Исследования Войда Волопаса другими астрономами все же обнаружили единичные галактики в ней. Дж. Муди, Р. Киршнер, Г. Макалпин и С. Грегори в 1987 году в своей научной работе опубликовали список из восьми галактик, обнаруженных в пустоте. В 1988 г. М. Штраус и Джон Хухра объявили об открытии еще трех галактик, а в 1989 г. Г. Олдеринг, Г. Ботун, Роберт Киршнер и Р. Марцке объявили об открытии еще пятнадцати галактик. До 1993 г. было известно 27 галактик в этой пустоте, а к 1997 году уже 60. Однако в таком большом пространстве это все еще очень малое количество, так как средняя область Вселенной с такими размерами обычно содержит многие тысячи ярких галактик. Большинство галактик, обнаруженных в Войде Волопаса, лежат на ее краю. Гипотетически, никто в центре этой пустоты не увидел ни одной звезды, только темноту. Мрачное место, которое влечет исследователей и любителей рассматривать далекие космические пространства.

Что является космическим телом? Какими характеристиками оно должно обладать?

Земля рассматривается как космическое тело, способное отражать свет.

Все видимые тела Солнечной системы отражают свет звезд. Какие объекты относятся к космическим телам? В космосе, кроме хорошо заметных больших объектов, очень много маленьких и даже крохотных. Список очень маленьких космических объектов начинается с космической пыли (100 мкм), которая является результатом выбросов газов после взрывов в атмосферах планет.

Астрономические объекты бывают разных размеров, форм и расположения относительно Солнца. Некоторые из них объединяют в отдельные группы, чтобы их легче было классифицировать.

Гиперскоростные звезды

Скорость гиперскоростных звезд очень высока. Она превышает скорость вращения галактики, в которой такая звезда находится. Скорость таких звезд может быть равна 1000 и более километров в секунду. Ученым удалось обнаружить только 20 таких гиперзвуковых звезд.

Существует несколько причин возникновения таких звезд. Наиболее часто звезды получают значительную скорость в результате разрушения одной звезды из системы двойных или тройных звезд.

Кроме того, некоторые из одиночных звезд могут развить такую скорость при прохождении на близком расстоянии от черной дыры.

Звезда US 708 является гиперскоростной. Она имеет самую высокую скорость в нашей галактике — 1200 км в секунду. Что же так разогнало её? Оказывается, раньше она была в двойной системе звезд, которые находились на очень близком расстоянии друг от друга. Со временем одна из звезд поглощала вещество другой, пока не взорвалась, придав второй небывалую скорость. Со временем US 708 покинет пределы нашей галактики.

А может ли звезда ускориться ещё сильнее? Теоретически, да! По расчетам ученых, при определенном прохождении звезды рядом с системой из двух сверхмассивных черных дыр, звезда может ускориться до нескольких десятков тысяч километров в секунду. Вы только себе представьте. А если такая звезда будет иметь планетарную систему с наличием разумной жизни, то каково же будет этим жителям оказаться межгалактическими путешественниками!

8

Орбитальный телескоп TESS

TESS (Transiting Exoplanet Survey Satellite) — космический телескоп, предназначенный для открытия экзопланет транзитным методом (фиксация характерных провалов яркости, вызванных прохождением планеты на фоне звезды). Разработан учеными MIT в рамках Малой исследовательской программы NASA.

Телескоп TESS

(Фото: NASA)

Орбитальный телескоп был запущен 18 апреля 2018 года на борту ракеты SpaceX Falcon 9. TESS — первый спутник NASA Astrophysics, запущенный по контракту со SpaceX.

Телескоп наблюдает за космическими объектами с высокоэллиптической околоземной орбиты (HEO). Впервые в качестве силы, стабилизирующей траекторию, используется гравитационное притяжение Луны

В первый год работы телескоп наблюдал Южное полушарие небесной сферы. Участок неба был разбит на 13 секторов, на каждый из которых TESS потратил 27 дней. 18 июля 2019 года первый этап миссии был завершен. По такому же принципу телескоп отработал год и в Северном полушарии. С августа 2020 года аппарат приступил к расширенной миссии, которая продлится, как ожидается, до сентября 2022 года.

В результате TESS охватил своим взглядом около 75% площади неба, открыл порядка 66 подтвержденных экзопланет и зафиксировал свидетельства более чем 2 100 планет-кандидатов, вращающихся вокруг ярких соседних звезд. В будущем уже телескоп Джеймса Уэбба изучит эти планеты-кандидаты и определит, могут ли они поддерживать жизнь.

Чем известен TESS

18 сентября 2018 года группа астрономов во главе с Челси Хуангом из MIT сообщила о первой обнаруженной телескопом экзопланете в системе звезды Pi Mensae на расстоянии около 60 световых лет от Земли.

Ролик NASA о первых успехах TESS

  • 15 апреля 2019 года в NASA сообщили о первом открытии TESS планеты размером с Землю. Планета HD 21749c составляет около 89% диаметра Земли и вращается вокруг HD 21749, звезды K-типа (т.е. звезды оранжевого цвета с температурой поверхности от 3800 до 5000 К) с массой около 70% Солнца, расположенной на расстоянии 53 световых лет в южном созвездии Ретикулум.Планета скорее всего горячая, с температурой поверхности до 427 °C.
  • 6 января 2020 года NASA объявило об открытии TOI 700 d, первой экзопланеты размером с Землю в обитаемой зоне, обнаруженной TESS. Экзопланета вращается вокруг звезды TOI 700 в 100 световых годах от нас в созвездии Дорадо.
  • В январе 2021 года ученые определили, что TYC 7037-89-1 — первая из когда-либо обнаруженных шестизвездных систем, в которой все звезды участвуют в затмениях.

Три такие пары составляют недавно открытую шестерную звездную систему под названием TYC 7037-89-1

(Фото: NASA)

У телескопа есть аккаунт в . Также информацию о деятельности TESS можно найти на странице NASA Exoplanets в .