Аморфные и кристаллические тела

Плавление кристаллических тел

Чтобы кристаллическое тело начало плавиться, его нужно нагреть до определенной температуры. Одни кристаллические тела будут плавиться при низкой температуре, а другие – при высокой. То есть, у каждого вещества своя температура плавления. Ее можно найти в справочнике физики. При этом, пока вещество не расплавится, его температура изменяться не будет.

Примечания:

  1. Кристаллические вещества плавятся при той же температуре, при которой они будут превращаться в твердое тело (кристаллизоваться).
  2. Чтобы жидкое вещество начало кристаллизоваться, оно сначала должно остыть до определенной температуры.
  3. Температура плавления и температура кристаллизации – это одна и та же температура.

Кристаллические тела

Сей­час мы впер­вые при­сту­па­ем к рас­смот­ре­нию твёр­дых тел с точки зре­ния мо­ле­ку­ляр­но ки­не­ти­че­ской тео­рии. Ко­неч­но же, твёр­дые тела ра­зи­тель­ным об­ра­зом от­ли­ча­ют­ся от газов, а тем более иде­аль­ных газов, по своей струк­ту­ре и свой­ствам, од­на­ко мы всё равно можем, поль­зу­ясь уже име­ю­щи­ми­ся зна­ни­я­ми, опи­сать их.

Во-пер­вых, вспом­ним, какое опре­де­ле­ние твёр­дым телам вво­ди­лось в млад­ших клас­сах:

Опре­де­ле­ние. Твёр­дые тела – тела, ко­то­рые со вре­ме­нем не ме­ня­ют своей формы и объ­ё­ма. Те­перь же для рас­ши­ре­ния тео­рии о твёр­дых телах мы вве­дём клас­си­фи­ка­цию твёр­дых тел. Твёр­дые тела де­лят­ся на…

  1. Кри­стал­лы (кри­стал­ли­че­ские тела)
  2. Аморф­ные тела
  3. Ком­по­зи­ты (ком­по­зит­ные тела) (рис. 1)

Рис. 1. При­ме­ры кри­стал­ли­че­ских (соль) и аморф­ных (воск) твёр­дых тел со­от­вет­ствен­но

Рас­смот­ри кри­стал­ли­че­ские тела:

Опре­де­ле­ние.Кри­стал­лы – твёр­дые тела, у ко­то­рых на­блю­да­ет­ся упо­ря­до­чен­ное рас­по­ло­же­ние ато­мов или мо­ле­кул (см. рис. 2).

Рис. 2. При­мер кри­стал­ли­че­ской ре­шёт­ки (ка­мен­ная соль)

Кри­стал­лы, в свою оче­редь, также де­лят­ся на два клас­са:

1. Мо­но­кри­стал­лы, то есть вся струк­ту­ра тела пред­став­ле­на еди­ным кри­стал­лом (алмаз, рубин, сап­фир…)

2. По­ли­кри­стал­лы, то есть струк­ту­ра тела пред­став­ля­ет собой объ­ё­ди­не­ние боль­шо­го ко­ли­че­ства малых кри­стал­лов (гра­нит, боль­шин­ство ме­тал­лов…)

Сле­ду­ет также знать, что кри­стал­ли­че­ская струк­ту­ра не яв­ля­ет­ся свой­ством, ха­рак­тер­ным для одних хи­ми­че­ских эле­мен­тов или со­еди­не­ний, а для дру­гих неха­рак­тер­ным. Дело в том, что мно­гие твёр­дые тела об­ла­да­ют так на­зы­ва­е­мым свой­ством по­ли­мор­физ­ма.

Опре­де­ле­ние. По­ли­мор­физм – свой­ство твёр­дых тел су­ще­ство­вать в со­сто­я­нии с раз­лич­ной кри­стал­ли­че­ской ре­шёт­кой. На­при­мер, уже при­во­ди­мые на одном из про­шлых уро­ков в ка­че­стве при­ме­ра алмаз и гра­фит оба со­сто­ят из уг­ле­ро­да, од­на­ко с раз­лич­ным рас­по­ло­же­ни­ем его ато­мов.

Кри­стал­лы могут быть рас­пре­де­ле­ны на две груп­пы также и по сле­ду­ю­щим свой­ствам: изо­тро­пия и ани­зо­тро­пия.

Опре­де­ле­ние. Ани­зо­тро­пия – за­ви­си­мость фи­зи­че­ских свойств кри­стал­ла от на­прав­ле­ния. То есть кри­стал­ли­че­ская струк­ту­ра не сим­мет­рич­на, и су­ще­ству­ет несколь­ко осей, вдоль ко­то­рых у кри­стал­ла про­яв­ля­ют­ся раз­лич­ные свой­ства (ме­ха­ни­че­ские, элек­три­че­ские, оп­ти­че­ские). Ани­зо­тро­пия свой­ствен­на мо­но­кри­стал­лам.

Изо­тро­пия – неза­ви­си­мость фи­зи­че­ских свойств кри­стал­ла от на­прав­ле­ния. Свой­ствен­на по­ли­кри­стал­лам, по­то­му как несим­мет­ри­че­ские мо­но­кри­стал­лы ори­ен­ти­ру­ют­ся ха­о­ти­че­ски, сводя на нет несим­мет­рич­ность.

Ещё одним прин­ци­пом, по ко­то­ро­му можно клас­си­фи­ци­ро­вать кри­стал­лы, яв­ля­ет­ся при­ро­да свя­зей, ко­то­рые удер­жи­ва­ют узлы кри­стал­ли­че­ской ре­шёт­ки вме­сте:

  1. Мо­ле­ку­ляр­ные связи ха­рак­тер­ны для кри­стал­лов с очень низ­кой ме­ха­ни­че­ской твёр­до­стью (кри­стал­лы на ос­но­ве во­до­ро­да и гелия)
  2. Ко­ва­лент­ные связи ха­рак­тер­ны, на­про­тив, для кри­стал­лов с вы­со­кой проч­но­стью (алмаз)
  3. Ион­ные связи (соли)
  4. Ме­тал­ли­че­ские связи (ме­тал­лы)

Виды кристаллов

Сравнение структур монокристаллов и поликристаллов

Кристаллы разделяют на монокристаллы и поликристаллы. Монокристаллами называют вещества, кристаллическая структура которых распространяется на все тело. Такие тела являются однородными и имеют непрерывную кристаллическую решетку. Обычно, такой кристалл обладает ярко выраженной огранкой. Примерами природного монокристалла являются монокристаллы каменной соли, алмаза и топаза, а также кварца.

Сульфат алюминия-калия монокристалл

Немало веществ имеют кристаллическую структуру, хотя обычно не имеют характерной для кристаллов формы. К таким веществам относятся, например, металлы. Исследования показывают, что такие вещества состоят из большого количества очень маленьких монокристаллов — кристаллических зерен или кристаллитов. Вещество, состоящее из множества таких разноориентированных монокристаллов, называется поликристаллическим. Поликристаллы зачастую не имеют огранки, а их свойства зависят от среднего размера кристаллических зерен, их взаимного расположения, а также строения межзеренных границу. К поликристаллам относятся такие вещества как металлы и сплавы, керамики и минералы, а также другие.

Поликристалл висмута

Небольшая характеристика аморфных тел

Из школьного курса физики можно вспомнить то, что аморфные вещества имеют такое строение, при котором атомы в них расположены в хаотичном порядке. Определенное место могут иметь лишь структуры-соседи, где такое расположение является вынужденным. Но все же проводя аналогию с кристаллами, аморфные тела не обладают строгой упорядоченностью молекул и атомов (в физике такое свойство получило название «дальний порядок»). В результате исследований было выяснено, что по своей структуре данные вещества схожи с жидкостями.

Некоторые тела (в качестве примера можно взять диоксид кремния, чья формула SiO2) могут одновременно находиться в аморфном состоянии и иметь кристаллическую структуру. Кварц в первом варианте обладает структурой неправильной решетки, во втором – правильного шестиугольника.

Свойства подобных тел

Они идентичны таковым у кристаллов. Различия лишь в показателях для каждого конкретного тела. Так, например, можно выделить такие характеристические параметры аморфных тел:

  • упругость;
  • плотность;
  • вязкость;
  • тягучесть;
  • проводимость и полупроводимость.

Часто можно встретить граничные состояния соединений. Кристаллические и аморфные тела могут переходить в состояние полуаморфности.

Также интересна та черта рассматриваемого состояния, которая проявляется при резком внешнем воздействии. Так, если аморфное тело подвергнуть резкому удару или деформации, то оно способно повести себя как поликристалл и расколоться на мелкие кусочки. Однако если дать этим частям время, то вскоре они снова соединятся вместе и перейдут в вязкое текучее состояние.

У данного состояния соединений нет определенной температуры, при которой происходит фазовый переход. Этот процесс сильно растянут, иногда даже на десятки лет (например, разложение полиэтилена низкого давления).

Как на графике выглядит процесс плавления кристаллического тела

Рассмотрим переход из твердого состояния в жидкое — плавление и, обратно — кристаллизацию, на примере льда.

Возьмем лед при начальной температуре «-40» градусов по Цельсию (рис. 3) и поместим его в кастрюльку. Поставим эту кастрюльку на газовую плиту и начнем нагревать лед.

Процесс нагревания льда изображается наклонной линией синего цвета. Потому, что время идет, а температура льда повышается.

Во время нагревания льда от отрицательной температуры до нуля градусов, в емкости будет содержаться только твердый лед.

Рис.3. Процесс плавления – это горизонтальная линия на температурном графике

Как только будет достигнута температура плавления льда – «0» градусов по Цельсию, лед начнет превращаться в жидкость. В кастрюльке начнет понемногу появляться вода. То есть, будет присутствовать и лед, и вода одновременно. Постепенно воды становится все больше, а льда – все меньше.

Мы продолжаем подавать тепловую энергию. Но температура льда во время плавления не меняется до тех пор, пока весь лед не расплавится и не превратится в жидкость.

Поэтому на графике температуры плавление кристаллических тел изображается горизонтальной линией. На рисунке 3 эта линия выделена красным цветом.

Примечания:

  1. Чтобы тело расплавить, ему нужно передать тепловую энергию. Значит, при плавлении, тепловая энергия поглощается телом.
  2. При плавлении кристаллических тел, вся полученная тепловая энергия тратится на разрушение кристаллической решетки. Поэтому кристаллические тела имеют конкретную температуру плавления. Она не будет повышаться до тех пор, пока все кристаллическое тело полностью не расплавится.

Когда лед полностью расплавится, в кастрюльке будет присутствовать только жидкая вода. На рисунке 5 это — крайняя правая точка на горизонтальной красной линии.

Если продолжать подводить тепловую энергию, температура воды начнет повышаться. Идет процесс нагревания воды. На графике процесс нагревания – это еще одна наклонная прямая линия, она располагается справа от красной линии плавления.

Структура кристаллических тел

Все кристаллические тела имеют четкую внутреннюю структуру. Группы частиц в одном и том же порядке периодически повторяются во всем объеме такого тела. Чтобы наглядно представить такую структуру, обычно используют пространственные кристаллические решетки. Они состоят из определенного количества узлов, которые образуют центры молекул или атомов конкретного вещества. Обычно такая решетка построена из ионов, входящих в состав нужных молекул. Так, в поваренной соли внутренняя структура состоит из ионов натрия и хлора, попарно объединенных в молекулы. Подобные кристаллические тела называются ионными.

Рисунок 3.6.1. Кристаллическая решетка поваренной соли.

Определение 2

В структуре каждого вещества можно выделить одну минимальную составляющую – элементарную ячейку.

Вся решетка, из которой состоит кристаллическое тело, может быть составлена путем трансляции (параллельного переноса) такой ячейки в определенных направлениях.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

Фазовые переходы: изменение агрегатных состояний вещества

При изменении внешних условий (например, если внутренняя энергия тела увеличивается или уменьшается в результате нагревания или охлаждения) могут происходить фазовые переходы — изменения агрегатных состояний вещества.

Фазовые переходы интересны тем, что все живое не Земле существует лишь благодаря тому, что вода умеет превращаться в лед или пар. С кристаллизацией, плавлением, парообразованием и конденсацией связаны многие процессы металлургии и микроэлектроники.

На схеме — названия всех фазовых переходов:

Переход из твердого состояния в жидкое — плавление;

Переход из жидкого состояния в твердое — кристаллизация;

Переход из газообразного состояния в жидкое — конденсация;

Переход из жидкого состояния в газообразное — парообразование;

Переход из твердого состояния в газообразное, минуя жидкое — сублимация;

Переход из газообразного состояния в твердое, минуя жидкое — десублимация.

График фазовых переходов

Если взять процесс превращения льда в воду, воды — в пар, и обратные действия, то мы получим очень информативный график.

Разбираемся по шагам. Сначала взяли лед, конечно, при отрицательной температуре, потому что при нуле лед начинает плавиться. Нагрели лед до температуры плавления (до 0 градусов).

AB — нагревание льда

После того, как лед нагрелся до температуры плавления, он начинает плавиться. Плавление происходит при постоянной температуре тем дольше длится, чем больше масса плавящегося вещества. Еще этот процесс зависит от свойств самого вещества, но об этом немного позже.

BC — плавление льда

Расправившись вещество уже в жидком состоянии снова начинает нагреваться, и температура увеличивается, пока не достигает температуры кипения. В данном случае нагревается вода — это значит, что ее температура кипения равна 100 градусам Цельсия.

CD — нагревание воды

При 100 градусах вода кипит, пока не выкипит целиком. В данном случае процесс аналогично плавлению происходит при постоянной температуре. Данный процесс нельзя путать с испарением, потому что парообразование происходит при конкретной температуре, а испарение — при любой.

DE — кипение (парообразование) воды

Далее полученный пар нагревается, но путем нагревания невозможно дойти до другого фазового перехода — можно пойти только обратно.

EF — нагревание пара

Первый шаг в обратную сторону — охлаждение до температуры кипения.

FG — охлаждение пара

Дойдя до температуры кипения (в данном случае 100 градусов), пар начинает переходить в жидкое состояние. Этот процесс также происходит при постоянной температуре.

GH — конденсация пара

Сконденсировавшись, вода охлаждается, пока не начнет замерзать.

HI — охлаждение воды

Кристаллизуется (замерзает) вода при той же температуре, что и плавится лед — 0 градусов. Кристаллизация также происходит при постоянной температуре.

IK — кристаллизация воды

После кристаллизации лед охлаждается.

KL — охлаждение льда

С нагреванием и охлаждением все совсем просто — мы либо передаем теплоту телу (веществу), и оно идет на увеличение температуры, либо тело отдает тепло и охлаждается.

В остальных процессах температура не меняется. Это связано с тем, что количество теплоты не всегда зависит от температуры. Формулы для всех процессов выглядят так:

Нагревание

Q = cm(tконечная-tначальная)

Охлаждение

Q = cm(tначальная-tконечная))

Q — количество теплоты

c — удельная теплоемкость вещества [Дж/кг*˚C]

m — масса

tконечная — конечная температура

tначальная — начальная температура

Плавление

Q = λm

Кристаллизация

Q = — λm

Q — количество теплоты

λ — удельная теплота плавления вещества [Дж/кг]

m — масса

Парообразование

Q = Lm

Конденсация

Q = — Lm

Q — количество теплоты

L — удельная теплота парообразования вещества [Дж/кг]

m — масса

История[править | править код]

Официальный выпуск Java Edition
1.0.0 Beta 1.9 Prerelease 6 Кристаллы Края добавлены в игру.
1.2.1 Кристаллы Края могли быть созданы с помощью яйца призывания с ID 200 (в серверной, они могли быть созданы с использованием команды ). Заспаунившийся кристалл появится так же, как и обычный кристалл, если бы под ним была коренная порода. Сейчас ещё возможно получить кристалл Края с помощью яйца призывания.
1.7.2 13w36a Кристаллы Края теперь могут быть созданы с помощью команды .
1.8 14w06a Кристаллы Края теперь могут заспауниться без нижнего блока коренной породы.
1.9 15w31a Некоторые кристаллы Края теперь окружены железными решётками.
15w44a Выпадает из лошади-скелета и лошади-зомби при условии убийства игроком.
Могут быть установлены только на обсидиан или коренную породу.
У них нет подставки, как у обычных кристаллов Края.
Используются на выходе портала в Край для возрождения дракона.
Кристалл Края не может быть уничтожен при помощи взрывов (за исключением взрыва черепа иссушителя).
15w44b Может быть сделан из ока Края, слезы гаста и 7 блоков стекла.
15w51a Кристалл Края больше нельзя поставить в режиме Приключения.
16w07a Убраны железные решётки, которые окружают кристалл Края, во время битвы с драконом.
1.9-pre1 Несколько кристаллов Края могут снова сгенерироваться с железной решёткой.
1.11 16w32a ID сущности был изменён с на .
1.13 18w21a Изменён цвет всплывающей подсказки у кристалла Края.
1.0 build 1 Кристаллы Края добавлены в игру.
Legacy Console Edition
Кристаллы Края добавлены в игру.
Огонь от кристаллов Края разрушает блок коренной породы, который должен находится под ним.
Выпадает из лошади-скелета и лошади-зомби при условии убийства игроком.
Могут быть установлены только на обсидиан или коренную породу.
У них нет подставки, как у обычных кристаллов Края.
Используются на выходе портала в Край для возрождения дракона.
New Nintendo 3DS Edition
1.7.10 Кристаллы Края добавлены в игру.

Свойства аморфных веществ

Отличием таких субстанций от веществ, имеющих кристаллическую структуру, является отсутствие строгого порядка нахождение атомов. Такая конструкция не является устойчивой и, постепенно видоизменяясь, имеет склонность к переходу в кристаллическую.

В сообщении на эту тему необходимо дать определение и кратко описать основные качества «бесформенных» тел.

От твёрдых тел они отличаются такими особыми качествами:

  • Текучесть. Долго находящееся без движения аморфное тело способно менять свою конфигурацию. При этом вещество, из которого состоит тело, под действием силы тяжести перемещается в нижнюю его часть. Визуально такой эффект можно наблюдать в виде утолщения нижней части стекла, долго простоявшего вертикально в оконном проеме. Такой эффект связывают с тем, что вещество в виде потеков постепенно перемещается вниз.
  • Изотропность. Этот термин означает, что физические свойства их абсолютно идентичны, независимо от их направленности. Здесь имеются в виду механические, электрические, оптические и тепловые свойства.
  • Отсутствие постоянной температуры плавления. Переход из одной фазы в другую осуществляется постепенно. Это происходит в результате размягчения аморфного тела.

Аморфные металлы

Аморфные металлы больше известны обычному человеку под названием металлические стекла.

Еще в 1940 году ученые заговорили о существовании данных тел. Уже тогда стало известно, что специально полученные вакуумным напылением металлы, не имели кристаллических решеток. И лишь через 20 лет было произведено первое стекло такого типа. Особого внимания у ученых оно не вызвало; и только спустя еще 10 лет о нем заговорили американские и японские профессионалы, а потом уже корейские и европейские.

Аморфные металлы отличаются вязкостью, достаточно высоким уровнем прочности и стойкостью к коррозии.

Строение кристаллов

Если описывать строение кристаллических и аморфных тел, то в первую очередь следует указать тип частиц, которые их слагают. В случае кристаллов это могут быть ионы, атомы, атом-ионы (в металлах), молекулы (редко).

Вообще данные структуры характеризуются наличием строго упорядоченной пространственной решетки, которая формируется в результате расположения образующих вещество частиц. Если представить строение кристалла образно, то получится примерно такая картина: атомы (или другие частицы) располагаются друг от друга на определенных расстояниях так, чтобы в результате получилась идеальная элементарная ячейка будущей кристаллической решетки. Затем данная ячейка многократно повторяется, и так складывается общая структура.

Главной особенностью является то, что физические свойства в подобных структурах изменяются в параллелях, но не во всех направлениях. Называется подобное явление анизотропией. То есть если воздействовать на одну часть кристалла, то вторая сторона может не реагировать на это. Так, можно измельчить половину кусочка поваренной соли, однако вторая останется целой.

Элементарная ячейка и виды решёток

Мы говорили в № 10 «Квантика» за 2018 год, что молекула — «минимальный кусочек» вещества, который ещё определяет его химические свойства: взяв много таких кусочков, получим сколько угодно этого вещества. У кристаллического вещества «минимальное количество», которое его всё ещё полностью определяет, — не молекула, а элементарная ячейка. Это самый маленький кусочек решётки, из копий которого можно составить всю решётку.

Например, кристаллическая решётка поваренной соли получается многократным повторением такого кусочка: Na — Cl. Это и есть элементарная ячейка соли, в ней два атома. А в элементарной ячейке полония — всего один атом (рис. 5). Такая кристаллическая решётка называется простой кубической: весь кристалл можно составить из одинаковых кубиков, в каждом — один атом (на рисунке один из этих кубиков выделен синим). Это и есть элементарная ячейка.

Обратите внимание! Чёрные линии, которыми на этом и следующих рисунках изображены связи между ионами, тоже образуют кубики. Но «разрезать» (даже мысленно) кристалл на ячейки удобнее не по ним — а то атомы попадут на границы разрезов, и мы легко запутаемся, разбираясь, «считается» ли этот атом внутри того или этого кубика

Лучше просто сдвинуть нашу воображаемую (синюю) сетку из элементарных ячеек.

Следующий по сложности тип решётки — такой, в котором атомы расположены не только по вершинам кубиков, нарисованных чёрными палочками-связями, но и в центре каждого кубика (рис. 6, слева). Так устроены, например, кристаллы железа. А другие атомы — например, меди и золота — предпочитают строиться в гранецентрированные решётки, у которых атомы стоят в вершинах кубов и в центрах их граней (рис. 6, справа).

Как мы видели на примере углерода, бывают и некубические решётки: у графита, например, элементарная ячейка имеет форму шестиугольной призмы.

Художник Мария Усеинова

 Или побольше, но у атомов с очень большим количеством электронов, так что на верхних этажах «электронного дома» до ядра уже очень далеко и внешние электроны держатся совсем непрочно. Из-за этого в нижних строках таблицы Менделеева почти все элементы — металлы.

 Можете проверить это, нагревая один конец вилки или ложки над плитой или опуская их в горячую воду. Только не обожгитесь.

 Имеются в виду «чистые» вещества, из одинаковых молекул. Смеси разных веществ (как воздух или дерево) мы сейчас не обсуждаем.

Кристаллическое или аморфное?

Вообще-то все «по-настоящему твёрдые» вещества, хорошо сохраняющие свою форму, — кристаллические. Хотя вот пластилин или глина например, когда засохнут, — вполне твёрдые, а вовсе не имеют кристаллической структуры. Такие вещества называются аморфными (не имеющими формы): молекулы (или атомы) в них не построены в строгом порядке, а «набросаны» более-менее как попало. Часто бывает, что одни и те же молекулы могут образовывать и кристаллическое вещество, и аморфное (вспомните алмаз, графит, уголь и сажу). Чтобы атомы успели «построиться» в кристалл, расплавленное вещество должно остывать достаточно медленно. Если остужать его быстрее — получится аморфное тело.

У кристаллических веществ есть определённая температура плавления, у каждого своя; если нагреть их до этой температуры, они резко меняют свои свойства и плавятся, превращаются в жидкость: кристалл разваливается на отдельные молекулы. У аморфных тел никакой определённой температуры плавления нет — при нагревании они плавно становятся всё более текучими. Молекулы (или атомы) в них и так уже расположены как в жидкости.

Типы кристаллических решёток

Кристаллическая решётка — это математическая модель, с помощью которой можно представить, как расположены частицы в кристалле. Мысленно соединив в пространстве прямыми линиями точки, в которых расположены эти частицы, мы получим кристаллическую решётку.

Расстояние между атомами, расположенными в узлах этой решётки, называется параметром решётки.

В зависимости от того, какие частицы расположены в узлах, кристаллические решётки бывают молекулярные, атомные, ионные и металлические.

От типа кристаллической решётки зависят такие свойства кристаллических тел, как температура плавления, упругость, прочность.

При повышении температуры до значения, при котором начинается плавление твёрдого вещества, происходит разрушение кристаллической решётки. Молекулы получают больше свободы, и твёрдое кристаллическое вещество переходит в жидкую стадию. Чем прочнее связи между молекулами, тем выше температура плавления.

Молекулярная решётка

В молекулярных решётках связи между молекулами не прочные. Поэтому при обычных условиях такие вещества находятся в жидком или газообразном состоянии. Твёрдое состояние для них возможно только при низких температурах. Температура их плавления (перехода из твёрдого состояния в жидкое) также низкая. А при обычных условиях они находится в газообразном состоянии. Примеры — иод (I2), «сухой лёд» (двуокись углерода СО2).

Атомная решётка

В веществах, имеющих атомную кристаллическую решётку, связи между атомами прочные. Поэтому сами вещества очень твёрдые. Плавятся они при высокой температуре. Кристаллическую атомную решётку имеют кремний, германий, бор, кварц, оксиды некоторых металлов и самое твёрдое в природе вещество — алмаз.

Ионная решётка

К веществам с ионной кристаллической решёткой относятся щёлочи, большинство солей, оксиды типичных металлов. Так как сила притяжения ионов очень велика, то эти вещества способны плавиться только при очень высокой температуре. Их называют тугоплавкими. Они обладают высокой прочностью и твёрдостью.

Металлическая решётка

В узлах металлической решётки, которую имеют все металлы и их сплавы, расположены и атомы, и ионы. Благодаря такому строению металлы обладают хорошей ковкостью и пластичностью, высокой тепло- и электропроводностью.

Чаще всего форма кристалла — правильный многогранник. Грани и рёбра таких многогранников всегда остаются постоянными для конкретного вещества.

Одиночный кристалл называют монокристаллом. Он имеет правильную геометрическую форму, непрерывную кристаллическую решётку.

Примеры природных монокристаллов — алмаз, рубин, горный хрусталь, каменная соль, исландский шпат, кварц. В искусственных условиях монокристаллы получают в процессе кристаллизации, когда охлаждая до определённой температуры растворы или расплавы, выделяют из них твёрдое вещество в форме кристаллов. При медленной скорости кристаллизации огранка таких кристаллов имеет естественную форму. Таким способом в специальных промышленных условиях получают, например, монокристаллы полупроводников или диэлектриков.

Мелкие кристаллики, беспорядочно сросшиеся друг с другом, называются поликристаллами. Ярчайший пример поликристалла — камень гранит. Все металлы также являются поликристаллами.