Как построить космическую червоточину?

Как построить червоточину?

Вторая работа принадлежит физикам из Принстонского университета и Института перспективных исследований в Нью-Джерси. Их интересовало теоретическое существование червоточин, достаточно больших, чтобы люди, путешествующие в пространстве-времени, могли через них пройти.

В этом случае физики разработали червоточину, которая образуется в пятимерном пространстве-времени. Эта модель также известна как модель Рэндалла-Сандрума. Неподготовленному наблюдателю такие червоточины покажутся похожими на черные дыры средней массы. Авторы, однако, признают некоторые практические ограничения этой теории. Например, червоточина должна быть чрезвычайно чистой – то есть свободной от блуждающих частиц:

Червоточины-это короткие пути в пространстве-времени, популярные у авторов научной фантастики и кинорежиссеров. Их никогда не видели, но, согласно общей теории относительности Эйнштейна, они могут существовать.

Однако и в этом случае есть небольшая проблема, связанная с фактическим созданием червоточины. Решить ее авторы второго исследования пока не смогли и прямо сейчас трудятся над тем, как эти объекты могут быть сформированы.

Исследователи также отмечают, что теоретически межгалактическое путешествие сквозь кротовые норы займет не более секунды. Но если ваша семья и друзья следят за вашим путешествием из-за пределов червоточины, то ждать окончание вашего путешествия им придется довольно долго. С их точки зрения, ваше путешествие продлится десятки тысяч лет. Так что дорогу домой, похоже, придется искать самому.

Примечания

  1. slovar.cc/rus/efremova-tolk/298087.html
  2. Грин, Брайан. Ткань космоса. Пространство, время и текстура реальности. – М.: Книжный дом «ЛИБРКОМ», 2009. Стр. 464-471.
  3. . hi-news.ru. Дата обращения: 11 октября 2015.
  4. Хуан Малдасена Чёрные дыры, кротовые норы и секреты квантового пространства-времени // В мире науки. — 2017. — № 1/2. — С. 82-89.
  5. Kip S. Thorne. Black Holes and Time Warps. — W. W. Norton, 1994. — ISBN 978-0-393-31276-8.
  6. Visser, Matt (2002), The quantum physics of chronology protection,

  7. Rodrigo, Enrico. The Physics of Stargates. — Eridanus Press, 2010. — С. 281. — ISBN 978-0-9841500-0-7.
  8. Enrico Rodrigo, The Physics of Stargates: Parallel Universes, Time Travel, and the Enigma of Wormhole Physics, Eridanus Press, 2010, p. 281.
  9. , Разрушение черных дыр.

Телепортация в России и в мире сегодня

Опрошенные эксперты утверждают: у квантовой телепортации есть колоссальный технологический потенциал, и лежит он, в основном, в области связи и вычислительной техники. По словам руководителя научной группы «Квантовые информационные технологии» в Российском квантовом центре Алексея Федорова, одно из направлений, которым сегодня занимаются физики — увеличение расстояния для квантовых коммуникаций. Ученым это необходимо для создания криптографических ключей, которые используются для интернет-соединения и в мобильных банках.

Индустрия 4.0

Что надо знать о квантовых вычислениях

«Сегодня для выработки криптографических ключей используются определенные классы математических алгоритмов, однако такой способ будет неустойчивым для атак с квантовым компьютером. Когда появится квантовый компьютер достаточной мощности, мы не сможем использовать нынешнее поколение математических алгоритмов, а вот квантовое распределение ключей абсолютно устойчивое», — говорит Федоров.

Одно из технических ограничений для использования квантового распределения ключей — это расстояние, на которое ключ может быть передан. «Сейчас максимальное расстояние распределения ключей с разумной скоростью составляет 100-200 км, и связано это с затуханием в канале передачи квантовых состояний (например, оптоволокне), то есть часть фотонов просто теряется. Чтобы это предотвратить, нужны квантовые повторители, которые могут строиться на основе квантовой телепортации. Поэтому эксперименты с квантовой телепортацией могут помочь нам увеличить расстояние для квантового распределения криптографических ключей», — объясняет Федоров.

За последние десятилетия ученые в мире регулярно делают новые открытия в квантовых коммуникациях. В конце 2019 года исследователи из Бристольского университета в Великобритании и Датского технического университета впервые смогли передать состояние между двумя чипами. Эти чипы, по заявлению ученых, способны кодировать квантовую информацию в свете и обрабатывать ее с высокой эффективностью и низким уровнем шума. Изобретение поможет человечеству создавать более сложные схемы для квантовых вычислений и коммуникаций.

Одним из научных центров в России, где сегодня изучают квантовую телепортацию, является Российский квантовый центр; там исследования ведутся группой ученых под руководством Александра Львовского. Схожие эксперименты проходят в лаборатории квантовой оптики Московского государственного университета.

На мировом уровне квантовой телепортацией занимается группа Юджина Ползика в институте Нильса Бора в Копенгагене, группа Антона Цайлингера в Австрии, Михаила Лукина в Гарвардском университете и группа Цзянь-Вэй Пана в Китае. Последней принадлежит рекорд по расстоянию передачи квантовой телепортации на 1 200 км.

Перспективы гравитационно-волновой и нейтринной астрономии

Теоретическая модель рождения нашей Вселенной

Наибольшими перспективами в изучении свойств материи на самом микроскопическом и высокоэнергетическом уровне для лучшего понимания квантовой гравитации обладает гравитационно-волновая и нейтринная астрономия за счет того что она изучает волны и частицы с наибольшей проникающей способностью. Так если микроволновое реликтовое излучение Вселенной образовалось через 380 тысяч лет после Большого взрыва, то реликтовые нейтрино в первые несколько секунд, а реликтовые гравитационные волны всего через 10-32 секунд! Кроме того большими перспективами обладают регистрации подобных излучений и частиц с горизонта событий черных дыр или у катастрофических событий (слияния нейтронных звезд и черных дыр, коллапсов массивных звезд).

Космос и струны

Тонкие сингулярные кольца напоминают другие необычные объекты, предсказываемые современной физикой, — космические струны, образовывавшиеся (согласно некоторым теориям) в ранней Вселенной при остывании сверхплотного вещества и смене его состояний. Они действительно напоминают струны, только необычайно тяжелые — многие миллиарды тонн на сантиметр длины при толщине в доли микрона. И, как было показано американцем Ричардом Готтом и французом Жераром Клеманом, из нескольких струн, движущихся друг относительно друга с большими скоростями, можно составить конструкции, содержащие временные петли. То есть, двигаясь определенным образом в гравитационном поле этих струн, можно вернуться в исходную точку раньше, чем из нее вылетел.Астрономы давно ищут такого рода космические объекты, и на сегодня один «хороший» кандидат уже имеется — объект CSL-1. Это две удивительно похожие галактики, которые в реальности наверняка являются одной, только раздвоившейся из-за эффекта гравитационного линзирования. Причем в данном случае гравитационная линза — не сферическая, а цилиндрическая, напоминающая длинную тонкую тяжелую нить.

Требуется дырка от бублика

До сих пор речь шла о тоннелеобразных кротовых норах с гладкими горловинами. Но ведь ОТО предсказывает и другой вид кротовых нор — и они принципе вообще не требуют никакой распределенной материи. Существует целый класс решений уравнений Эйнштейна, в которых четырехмерное пространство-время, плоское вдали от источника поля, существует как бы в двух экземплярах (или листах), а общими для них обоих являются лишь некое тонкое кольцо (источник поля) и диск, этим кольцом ограниченный.

Кольцо это обладает поистине волшебным свойством: можно сколь угодно долго «бродить» вокруг него, оставаясь в «своем» мире, но стоит пройти его насквозь — и попадешь совсем в другой мир, хотя и похожий на «свой». А чтобы вернуться назад, надо еще раз пройти сквозь кольцо (причем с любой стороны, не обязательно с той, с которой только что вышел).

Само кольцо сингулярно — кривизна пространства-времени на нем обращается в бесконечность, но все точки внутри него вполне нормальны, и движущееся там тело не испытывает никаких катастрофических воздействий.

Интересно, что таких решений великое множество — и нейтральных, и с электрическим зарядом, и с вращением, и без него. Таково, в частности, знаменитое решение новозеландца Р. Керра для вращающейся черной дыры. Оно наиболее реалистично описывает черные дыры звездных и галактических масштабов (в существовании которых большинство астрофизиков уже не сомневается), так как едва ли не все небесные тела испытывают вращение, а при сжатии вращение только ускоряется, тем более — при коллапсе в черную дыру.

Итак, получается, что именно вращающиеся черные дыры — «прямые» кандидаты в «машины времени»? Однако черные дыры, образующиеся в звездных системах, окружены и заполнены горячим газом и жесткими смертоносными излучениями. Помимо этого чисто практического возражения есть и принципиальное, связанное со сложностями выхода из-под горизонта событий на новый пространственно-временной «лист». Но на этом не стоит останавливаться подробнее, так как согласно ОТО и многим ее обобщениям кротовые норы с сингулярными кольцами могут существовать и без всяких горизонтов.

Так что есть по крайней мере две теоретические возможности для существования кротовых нор, соединяющих разные миры: норы могут быть гладкими и состоять из экзотической материи, а могут возникать за счет сингулярности, оставаясь при этом проходимыми.

Старт и управление космическим полетом

Сегодня на нашей планете действуют более двух десятков космодромов. Все они построены по одному принципу, поскольку все существующие сегодня ракеты- носители имеют жидкостные ракетные двигатели и требуют сходных процедур сборки и запуска.

Строительство первого в мире космодрома началось в СССР в 1955 г. Сегодня это знаменитый Байконур, расположенный на территории Казахстана. Уже в 1957 г. здесь состоялся первый старт ракеты-носителя Р-7. Главный космодром США — Космический центр имени Дж. Кеннеди — находится на острове Мерритт близ мыса Канаверал во Флориде. В 2016 г. состоялся первый запуск ракеты с нового российского космодрома Восточный, который расположен в Амурской области.

Главный зал Центра управления полетами в г. Королев

Любой космодром состоит из стартового комплекса с установками для заправки ракеты топливом, системы управления и слежения за ракетой после запуска и обслуживающих объектов. Как правило, центр управления полетами не находится прямо на космодроме. Российский ЦУП расположен в городе Королеве под Москвой, американский Космический центр имени Линдона Джонсона — в Хьюстоне, столице штата Техас.

Перед стартом ракету-носитель по железной дороге доставляют к пусковому столу и устанавливают на нем в вертикальном положении. Пока идет подготовка, ракету поддерживают технологические башни, при помощи которых идет все обслуживание. Через заправочные мачты в баки ракеты-носителя закачивается горючее. Перед стартом фермы отходят от ракеты-носителя, на нее подается команда на старт, автоматика запускает двигатели, и ракета покидает стартовый стол. После старта центр управления полетом следит за ракетой при помощи наземных станций слежения.

Черные дыры Шварцшильда и Райснера-Нордстрема

Черная дыра Шварцшильда может считаться непроходимой кротовой норой. Что касается черной дыры Райснера-Нордстрема, она устроена несколько сложнее, однако также непроходима. Тем не менее придумать и описать четырехмерные кротовые норы в космосе, которые можно было бы пройти, не так уж сложно. Стоит лишь подобрать необходимый вид метрики. Метрический тензор, или метрика, — набор величин, используя который, можно вычислить четырехмерные интервалы, существующие между точками-событиями. Этот набор величин полностью характеризует также и поле тяготения, и геометрию пространства-времени. Геометрически проходимые кротовые норы в космосе даже проще, нежели черные дыры. В них нет горизонтов, которые ведут к катаклизмам с ходом времени. В различных точках время может идти а разном темпе, однако оно не должно при этом бесконечно останавливаться или ускоряться.

Что такое червоточина?

Самым первым мечтателем, а заодно и создателем идеи построить мост из одной точки Вселенной в другую, стал американский физик-теоретик Джон Арчибальд Уилер. Именно Уилер придумал такое понятие, как «кротовая нора» (wormhole), которое со временем перешло во все языки мира. По сути, кротовая нора — это гипотетическая особенность в полотне пространства-времени соединять две абсолютно разные области во Вселенной.

В принципе, построить червоточину довольно просто. Согласно Общей Теории Относительности Эйнштейна, масса и энергия гипотетического объекта сильно деформируют структуру пространства-времени, из-за чего особая конфигурация материи и энергии позволяет образовать туннель, короткий путь между двумя другими отдаленными частями Вселенной.

Создание пространственного тоннеля могло бы открыть невероятные возможности для человека при освоении Вселенной

К сожалению, даже на бумаге кротовые норы являются крайне нестабильными объектами. Даже одна элементарная частица (фотон), проходящий через червоточину, вызывает катастрофический каскад, который разрывает червоточину на части. Однако некоторая доза отрицательной материи может противодействовать дестабилизирующим эффектам регулярной материи, пытающейся пройти через червоточину, делая ее проходимой.

Если же материи с отрицательным зарядом не существует, то есть еще один вариант создания кротовой норы. Для этого, нам всего лишь потребуется соединить черную дыру с белой дырой. Когда эти два странных объекта соединяются, они образуют совершенно новую субстанцию — червоточину. Есть только одна проблема в этом гениальном плане — белых дыр не существует.

Несмотря на возможное существование белых дыр, такой объект существует в настоящее время только на бумаге ученых

Поскольку белых дыр в природе не существует, нам нужен новый план. К счастью, некоторые умные математики показывают возможный ответ: таким объектом может быть заряженная черная дыра. Для того, чтобы из гигантского черного монстра сделать послушный и безобидный телепорт, нам всего лишь потребуется придать ему электрический заряд. Внутри заряженной черной дыры может находиться странное место, с относительно стабильным уровнем сингулярности, что позволит нам образовать мост к другой противоположно заряженной черной дыре.

Для того, чтобы все это сработало, нам нужно убедиться, что две заряженные черные дыры находятся на безопасном расстоянии друг от друга. Для того, чтобы держать черные дыры на определенном расстоянии, мы можем использовать космические струны, которые представляют из себя специфические трещины в ткани пространства-времени. Эти трещины образовались в самом начале становления Вселенной после Большого Взрыва, но, как и многое в нашем мире, пока еще остаются только гипотетическими объектами.

Несмотря на то, что космические струны остаются гипотетическими структурами, ученые уже надеются создать с их помощью «кротовые норы»

Если пронзить черные дыры подобной космической струной, то напряжение в струне может предотвратить притяжение заряженных черных дыр друг к другу. По сути, такое грандиозное космическое представление может напоминать упражнение по перетягиванию каната. Выполнив столь «нехитрое» упражнение, человечество сможет получить вполне себе стабильный и относительно безопасный по космическим меркам вид транспорта.

Возможно ли все вышеописанное выполнить в реальности? Что же, давайте попробуем порассуждать об этом в нашем Telegram-чате.

«Мосты» Эйнштейна-Розена

С одной стороны в нору входят электрические силовые линии, а с другой они выходят, не заканчиваясь и не начинаясь нигде. Дж. Уилер, американский физик, по этому поводу сказал, что получается «заряд без заряда» и «масса без массы». Вовсе не обязательно в этом случае считать, что мост служит для соединения двух разных вселенных. Не менее уместным будет и предположение о том, что у кротовой норы оба «устья» выходят в одинаковую вселенную, однако в разные времена и в разных ее точках. Получается что-то, напоминающее пустотелую «ручку», если ее пришить к практически плоскому привычному миру. Силовые линии входят в устье, которое можно понимать как отрицательный заряд (допустим, электрон). Устье, из которого они выходят, имеет положительный заряд (позитрон). Что же касается масс, они с обеих сторон будут одинаковыми.

https://www.youtube.com/watch?v=rIWBBgyJ7Ro

Путешествия во времени

Если существуют проходимые червоточины, они могут позволить путешествие во времени. Предлагаемая машина времени, использующая проходимую червоточину, гипотетически будет работать следующим образом: один конец червоточины ускоряется до околосветовой скорости, возможно, с помощью какой-то продвинутой двигательной установки, а затем возвращается в исходную точку. Другой способ состоит в том, чтобы взять один вход в червоточину и переместить его в гравитационное поле объекта с большей гравитацией, чем второй вход, а затем вернуть его в положение рядом со вторым входом. Для обоих этих методов замедление времени приводит к тому, что для внешнего наблюдателя перемещаемый конец червоточины стареет меньше или становится «моложе» неподвижного конца. Так как время соединяется через червоточину иначе, чем снаружи, то синхронизированные часы на любом конце червоточины всегда будут оставаться синхронизированными для наблюдателя, проходящего через червоточину, независимо от движения концов. Это означает, что наблюдатель, входящий в «молодой» конец, выйдет из более «старого» конца во время, равное возрасту более «молодого» конца, что переместит его назад во времени с точки зрения внешнего наблюдателя. Одним существенным ограничением такой машины времени является то, что назад во времени можно переместиться только до момента создания этой машины.

В 1993 году Мэтт Виссер утверждал, что два устья червоточины с такой индуцированной разностью часов не могут быть объединены без индукции квантового поля и гравитационных эффектов, которые либо разрушат червоточину, либо два устья будут отталкивать друг друга, или, в противном случае, будет невозможна передача информации через червоточину. Из-за этого два выхода невозможно будет расположить достаточно близко для получения нарушения причинности. Однако в статье 1997 года Виссер предположил, что сложная конфигурация «кольца Романа (англ.)русск.» (названная в честь Тома Романа) из N червоточин, расположенных в симметричном многоугольнике, все ещё может работать как машина времени, хотя он и пришёл к выводу, что это скорее всего недостаток в классической квантовой теории гравитации, а не доказательство того, что возможно нарушение причинности.

Кротовые норы в общей теории относительности

Общая теория относительности (ОТО) допускает существование таких туннелей, хотя для существования проходимой кротовой норы необходимо, чтобы она была заполнена экзотической материей с отрицательной плотностью энергии, создающей сильное гравитационное отталкивание и препятствующей схлопыванию норы. Решения типа кротовых нор возникают в различных вариантах квантовой гравитации, хотя до полного исследования вопроса ещё очень далеко.

Область вблизи самого узкого участка кротовой норы называется «горловиной». Кротовые норы делятся на «внутримировые» (англ. intra-universe) и «межмировые» (англ. inter-universe), в зависимости от того, можно ли соединить её входы кривой, не пересекающей горловину.

Различают также проходимые (англ. traversable) и непроходимые кротовины. К последним относятся те туннели, которые коллапсируют слишком быстро для того, чтобы наблюдатель или сигнал (имеющие скорость не выше световой) успели добраться от одного входа до другого. Классический пример непроходимой кротовины — мост Эйнштейна — Розена в максимально расширенном пространстве Шварцшильда, а проходимой — кротовины Морриса — Торна.

Проходимая внутримировая кротовая нора даёт гипотетическую возможность путешествий во времени, если, например, один из её входов движется относительно другого, или если он находится в сильном гравитационном поле, где течение времени замедляется. Также кротовые норы гипотетически могут создавать возможность для межзвёздных путешествий, и в этом качестве кротовины нередко встречаются в научной фантастике.

Кротовая нора возле Сатурна

Пока ученые пытаются найти способы искусственного создания кротовых нор, не исключено, что они появляются в космосе самопроизвольно. В последние недели СМИ начали активно распространять информацию о том, что возле Сатурна обнаружили странное излучение, которое приверженцы апокалипсиса сразу назвали зарождающейся черной дырой, угрожающей всей Солнечной системе. По аналогии с фильмом «Интерстеллар» многие заговорили о том, что на самом деле это не черная дыра, а кротовая нора, через которую открывается путь к другим галактикам или даже в другую Вселенную. Однако на самом деле это может быть простым сбоем аппаратуры, произошедшем в результате электромагнитного или гамма всплеска.

Гравитационные волны, черные дыры и червоточины

Исследователи полагают, что черная дыра, закручивающаяся по спирали в червоточину, должна создавать странный узор ряби в пространстве-времени. И при наличии правильных инструментов некоторые обсерватории могли бы их обнаружить.

Вход и выход из кротовый норы, скорее всего, выглядит так.

К такому выводу пришли физики в работе, опубликованной в середине лета на сервере препринтов arXiv.org. Волны от пары черная дыра-червоточина будут мигать и включаться, когда черная дыра пройдет через червоточину, а затем снова выйдет. Но на сегодняшний день никаких свидетельств существования этих объектов не существует.

Кротовы норы, тайная дверь Бога.

Раз уж речь зашла о теориях, то нельзя не вспомнить и другую гипотезу обязательного существования кротовых нор. Она соотносится с чудесным моментом создания самой Вселенной — Большого взрыва.

Некто, подготавливая Большой взрыв, а точнее Бог или Создатель, это уж кому как угодно, сам в этот момент не мог присутствовать внутри эксперимента. Во-первых, это гигантские, если не сказать адовы силы сжатия, и потом — это сам взрыв. Но ведь где-то в этот момент находился Создатель?

Видимо так оно и было, если допустить создание структуры пространственно-временного туннеля на первичном уровне построения Вселенной, на скелет которой потом и нанизывалось все то, что мы вкладываем в понятие Вселенная. Впрочем, Создатель мог наблюдать за процессом и удаленно, дожидаясь когда развернуться пространственно-временные туннели.

Ну и кроме того, червоточины являются логичным решением быстрого перемещения между Вселенными и галактиками, о чем Создатель как величайший инженер заранее продумал, имея подобный опыт при создании других вселенных. Ведь это на самом деле очень удобный способ перемещения между наблюдаемыми объектами, к тому же отстоящих друг от друга на гигантские расстояния.

Пожалуй, более всех энтузиазм к подтверждающейся теории существования червоточин проявят поклонники уфологии и внеземных цивилизаций. Ведь по одной из теорий, именно с помощью кротовых нор в нашу Вселенную проходят инопланетные представители.

Достижения российских физиков

Как выяснилось, свойства материи, являющейся материалом для строительства кротовых нор, могут реализоваться за счет поляризации вакуума квантовых полей. Российские физики Сергей Сушков и Аркадий Попов совместно с испанским исследователем Давидом Хохбергом, а также Сергей Красников недавно пришли к этому выводу. Вакуум в этом случае не является пустотой. Это квантовое состояние, характеризующееся наименьшей энергией, то есть поле, в котором отсутствуют реальные частицы. В этом поле постоянно возникают пары частиц «виртуальных», исчезающие до того, как их обнаруживают приборы, однако оставляющие свой след в виде тензора энергии, то есть импульса, характеризующегося необычными свойствами. Несмотря на то что квантовые свойства материи в основном проявляются в микромире, кротовые норы, рождаемые ими, при некоторых условиях способны достигать значительных размеров. Одна из статей Красникова, кстати, называется «Угроза кротовых нор».

Теория струн и браны Стивена Хокинга

28 июня 2009 года известный на весь мир физик-теоретик Стивен Хокинг организовал, вероятно, самую необычную в мире вечеринку. Весь день он просидел за накрытым столом в комнате, украшенной воздушными шарами – Хокинг явно ждал гостей. Но в гости к ученому так никто и не пришел. Когда день подошел к концу, Хокинг разослал приглашения на праздник. Спустя три года, выступая на очередном научном симпозиуме, он заявил: «У меня есть экспериментальные доказательства того, что путешествие во времени невозможно». И рассказал об этом случае. Оказывается, Хокинг устраивал вечеринку специально для путешественников во времени, однако на нее никто и не явился.

Эксперимент получился забавным, и сам Хокинг неоднократно говорил о том, что, если кто-то подаст заявку на выделение гранта на исследование путешествий во времени, ему тут же откажут, а то и вовсе уволят. Несмотря на это, великий физик не отрицал возможность путешествий во времени и считал, что это очень серьезный вопрос, требующий научного подхода.

Фото: Anthony Devlin/PA Images

Как мы уже отмечали, кротовые норы (если даже они существуют) нестабильны – они возникают буквально на доли секунды, соединяя совершенно разные области пространства-времени, а потом вновь исчезают, и повлиять на это мы не в силах. Чтобы использовать кротовины для перемещений в пространстве и времени, их необходимо, во-первых, стабилизировать, а во-вторых – увеличить в размерах. И то, и другое потребует огромного количества энергии, которым человечество, скорее всего, никогда не будет обладать. Но и здесь ученые нашли лазейку.

Действительно, общая теория относительности никак не сочетается с квантовой физикой, и это является самой большой проблемой современной физики в целом. Чтобы совершать путешествия во времени, нужна другая теория описания Вселенной, которая будет учитывать квантовую природу материи и позволит нам выйти за пределы фундаментальных законов физики. Поиском такой теории, объединяющей квантовую механику с эйнштейновской теорией гравитации, физики занимаются до сих пор. Одним из главных кандидатов на эту роль является известная многим по научно-популярным книгам и фильмам теория струн (или М-теория).

Теоретически с помощью космических струн могут быть образованы поля замкнутых времениподобных кривых, позволяющих путешествовать во времени. Если приблизить одну струну к другой или подвести ее к черной дыре, в теории может образоваться целый массив замкнутых времениподобных кривых. Совершая тщательно рассчитанную «восьмерку» на космическом корабле вокруг двух бесконечно длинных космических струн, в теории можно оказаться где угодно и когда угодно.

Но самая интересная и, пожалуй, главная особенность теории струн состоит в том, что она не работает в трех и даже четырех измерениях: космические струны могут вибрировать только в 10 либо в 26 измерениях. Струна может вибрировать двумя способами – по часовой стрелке и против нее. Вибрируя по часовой стрелке, она занимает 10-мерное пространство, против – 26-мерное. И никакое другое число измерений в математическую модель данной теории не укладывается. Нашему мозгу трудно это постичь, но, как полагают ученые, все измерения, которые находятся за пределами привычных нам, мы просто не можем увидеть – настолько они малы.

Как полагал ученый Эдвард Уиттен из Принстонского университета, развивший теорию струн, материя в форме частиц является ничем иным как модами струны (мода в физике – вид колебаний, возбуждающихся в сложных колебательных системах). Каждой моде вибрации струны соответствует отдельная частица. Ни один электронный микроскоп, даже самый совершенный, не в состоянии передать, что исследуемые нами частицы на самом деле являются тонкой вибрирующей струной. А поскольку струна движется в пространстве-времени, она имеет способность разбиваться на меньшие струны или, объединяясь с другими струнами, образовывать струны большей длины.

Важность теории струн состоит в том, что она одновременно объясняет природу пространства-времени и материи. Некоторые ученые полагают, что, если мы научимся манипулировать космическими струнами – сближать, скручивать и сплетать их, мы сможем управлять и пространством-временем вокруг них

Тогда нам станут доступны полноценные перемещения в прошлое и будущее. Однако, несмотря на математическую строгость и целостность теории струн, экспериментально доказать ее пока невозможно.

Машины Торна и Типлера

Многие физики пытались решить уравнения Эйнштейна, чтобы приблизить разгадку путешествий сквозь время и пространство. Но мало кто предпринимал попытки построить настоящую машину времени или хотя бы представить, как она могла бы выглядеть в реальности. Впрочем, нашлись и такие энтузиасты, среди них – американские физики Кип Торн и Фрэнк Типлер.

Работа Торна в этой области вызывает истинное восхищение. Ученый выдвинул идею «обратимого подпространственного перехода», который позволил бы совершать путешествия в прошлое с максимальным комфортом. К примеру, Торн утверждает, что при пользовании его машиной времени вес путешественника во времени не будет превышать его обычный вес на Земле, подпространственный переход не закроется во время путешествия, а само путешествие займет не больше 200 дней.

Фото: Ben Stansall/PA Images

Коллега Торна, Фрэнк Типлер, предложил другой подход. Его версия машины времени – это цилиндр, который вращается с большой скоростью и таким образом искривляет пространство-время. В машине времени Типлера объект проходит через черную дыру и возвращается в исходную точку в тот же момент времени, в который ее покинул. Физики называют это замкнутой времяподобной линией. Эта линия должна дважды пройти сквозь вращающуюся черную дыру. Машина времени Типлера делает движение путешественника во времени колебательным, благодаря чему он не разлагается на поток атомов во время прохождения через черную дыру.

Здесь важно отметить, что в модели с плоским пространством-временем необходимым условием путешествия во времени было движение со скоростью, превышающей скорость света. В искривленном пространстве-времени это условие отпадает

Кроме того, сегодня ученые подозревают, что в мире есть частицы (тахионы), которые движутся в пространстве быстрее света. Все это пока лишь догадки, но, возможно, со временем они подтвердятся и помогут нам больше узнать о Вселенной.

Вопрос философии

Если кротовые норы когда-нибудь все-таки удастся построить или обнаружить, область философии, связанная с интерпретацией науки, столкнется с новыми задачами и, нужно сказать, весьма непростыми. При всей, казалось бы, абсурдности временных петель и нелегких проблемах, касающихся причинности, данная область науки, вероятно, когда-нибудь с этим разберется. Так же, как разобрались в свое время с проблемами квантовой механики и созданной Эйнштейном теории относительности. Космос, пространство и время — все эти вопросы во все века интересовали людей и, видимо, будут интересовать нас всегда. Познать их полностью едва ли удастся. Изучение космоса вряд ли когда-либо будет завершено.