Как ходит солнце по сторонам света. где садится солнце?

Что такое гравитация простыми словами детям.

с лат. gravitas — «тяжесть» ) — невидимая сила , притягивающая объекты с меньшей массой к более массивным. Таким образом определяющая положение галактик, планет, спутников и всех небесных тел. В контексте Земли отвечает за то, что объекты притягиваются к поверхности и не улетают за пределы планеты. Это одно из четырех фундаментальных взаимодействий в физике, определяющих функционирование вселенной, наряду со слабым и сильным атомными взаимодействиями и электромагнетизмом.

Точного научного определения термина не существует, поскольку подходы к изучению гравитации и теории относительно её природы постоянно разрабатываются, дополняются и совершенствуются. Актуальными на сегодня являются закон всемирного тяготения Ньютона вместе с его дополнениями и общая теория относительности Эйнштейна.

Гравитация и закон всемирного тяготения

Закон всемирного тяготения, предложенный Ньютоном, не ставит своей целью описание природы возникновения гравитации, но позволяет совершать верные математические расчеты на практике. Для этого пользуются формулой

, где:

  • F — сила притяжения;
  • r — расстояние между их центрами;
  • G — гравитационная постоянная, равная 6.67×10 -11 м 3 /кг×с 2 и отражающая то, с какой силой бы действовали друг на друга два тела, размещенные на расстоянии 1 метра и имеющие одинаковую массу в 1 килограмм.

Собственное гравитационное поле создается каждым объектом Вселенной вне зависимости от его массы.

Гравитация на каждой из планет разная и напрямую зависит от массы астрономического тела. Так, к примеру, показатели гравитации на Юпитере многократно превышают земные. На тело, имеющее земной вес в 60 килограмм, Юпитер будет оказывать такую гравитацию, как Земля оказывает на тело с массой 142 килограмма.

Гравитация и общая теория относительности

Несмотря на то, что закон всемирного тяготения Ньютона отлично справляется с математическим описанием гравитации, он порождает конфликты и несоответствия, когда речь заходит о дальности действия и скорости распространения этой величины.

Дело в том, что в теории Ньютона предполагается, что гравитация окутывает всю вселенную и действует мгновенно в каждой её части. Однако, это невозможно исходя из того, что пределом допустимой скорости в физике является скорость света. Даже если бы скорость распространения гравитации была равна скорости света, она бы не могла мгновенно срабатывать даже на небольших участках космоса, поскольку нуждается в преодолении расстояния.

Решение проблемы нашлось в общей теории относительности Эйнштейна, которая рассматривает гравитацию не как силу, но как искривление времени-пространства под влиянием масс.

Для наглядности можно представить натянутую вокруг обруча ткань. После того, как на нее положат яблоко, она искривится. Если же после этого положить рядом тяжелую гирю, она искривится уже с центром в новом месте , а яблоко притянет к гире.

В физике элементарных частиц была выработана концепция гравитона — гипотетически существующей фундаментальной частицы, которая ответственна за гравитацию. Такая частица имеет нулевую массу, однако, обладает энергией, позволяющей ей влиять на поведение других элементарных частиц.

Понятие гравитационных волн

Несмотря на то, что общая теория относительности Эйнштейна уже давно была принята научным сообществом, она нашла очередное свое подтверждение с открытием физиками гравитационных волн в 2015 году.

Людям, далеким от теоретической физики и астрономии, будет нетрудно представить гравитационные волны в виде кругов, некоторое время разрастающихся, а затем затухающих после того, как в воду был брошен камень. Они имеют относительно похожую форму и структуру, но проявляются не на поверхности воды, а в пространстве-времени Вселенной.

Гравитационные волны оказывают дополнительное влияние на все близлежащие объекты и возникают при резкой смене массы в конкретной точке. Примером такого изменения в структуре космоса может быть слияние сверхмассивных черных дыр.

Ученые не могли столь долго открыть такие волны из-за низкой силы гравитации. Даже при сегодняшнем уровне развития технологий для этого пришлось поместить в вакуум четырехкилометровый детектор , состоящий из подвешенных зеркал.

Людям ошибочно кажется, что гравитация невероятно сильна. На самом же деле, это самая слабая из всех фундаментальных взаимодействий. Иллюстрацией того, насколько сильно её превосходит, к примеру, электромагнитное взаимодействие может служить факт того, что даже маленькие магниты на холодильник надежно закреплены магнитным притяжением на своем месте и будто игнорируют силу земного притяжения.

Зачем людям отслеживать передвижение Солнца

Давно замечено: движение небесных светил всегда соотносится с определенными событиями на земле. Заметки повлияли на появление первых календарей: солнечных, лунных. Современные наблюдения основаны на научных исследованиях развития горячей планеты:

  • с Солнцем связаны биологические ритмы живых существ;
  • зная о вспышках, предугадывают магнитные бури, чтобы метеозависимая группа населения могла перенести их комфортно;
  • движение светила – отличный указатель в ориентировании на местности;
  • астрономические расчеты базируются на базовых показателях солнечной активности.

Солнце влияет на погоду, поэтому для планирования деятельности рассчитывают траекторию прохождения и возможность осадков. Наблюдение первобытных людей было направлено на выживание: вовремя успеть в лагерь, построить зимовку, найти дорогу, если заблудился. Они не знали астрономических терминов, но безошибочно научились определять по Солнцу стороны света, исчислять дни, время, придумав песочные, солнечные, каменные часы и приблизив человечество к цивилизации.

Магнитное поле Солнца

Изображение: NASA / GSFC / Solar Dynamics Observatory

У Солнца есть магнитное поле. Исследователи выделяют глобальное поле звезды и множество локальных полей.

Глобальное поле обладает цикличностью. Его напряженность колеблется с частотой 11 лет, при этом наблюдаются изменения в частоте появления солнечных пятен. Такой цикл называют «циклом Швабе» по фамилии ученого, заметившего ещё в XIX веке, что количество солнечных пятен на поверхности светила меняется циклически. Лишь позже стала очевидна связь этого явления с процессами в зоне конвективного переноса и колебаниями магнитного поля. В начале XX века стало ясно, что за один цикл Швабе полярность магнитного поля меняется на противоположное. То есть Солнцу нужна два 11-летних цикла, чтобы магнитное поле вернулось к начальному состоянию. В связи с этим выделяют 22-летний цикл, известный как «цикл Хейла».

В разных районах Солнца могут наблюдаться и малые, то есть локальные магнитные поля. Их напряженность может в тысячи раз превышать напряженность глобального поля, однако время их существования редко превышает несколько десятков дней. Особенно часто локальные поля наблюдаются в районе солнечных пятен. Дело в том, что эти пятна как раз и являются теми точками, через которые магнитные поля из внутренних областей выходят наружу.

Виды полушарий, различия между ними

Зеленая планета условно поделена на 4 полушария: Северное, Южное разделяют землю по экватору. Западное и Восточное определяются по Гринвичскому и 180⁰ меридианам. Северное и Южное «отвечают» за времена года. Смена времен года происходит из-за вращения нашей планеты вокруг Солнца и неравномерного освещения. В то время, когда на Северном полушарии зима, на Южном продолжается лето. И наоборот – когда Южное полушарие засыпано снегом – в Северном царит жара.

Виды полушарий

В Северном полушарии восход и закат Солнца наблюдают в таких направлениях:

Весна Лето Осень Зима
Восход Северо-восток Северо-восток Юго-восток Юго-восток
Закат Северо-запад Северо-запад Юго-запад Юго-запад

Чтобы засечь восход строго на востоке, а заход на западе, нужно дождаться весеннего или осеннего равноденствия, 20 марта, или 23 сентября.

Еще 2 особые дня в году, которые важно запомнить: «дни солнцестояния». Это те, в которых небесное светило стоит над Землей или максимально высоко, или максимально низко

Соответствуют 21-22 декабря (зимнее) и 20-21 июня (летнее солнцестояние).

Ориентирование – полезный навык не только для туристов,  а для каждого, интересующегося элементарной навигацией. Вот как определить нужное направление, если человек находится в Северном или Южном полушарии:

Становятся спиной к Солнцу, лицом к собственной тени

Северное полушарие Южное полушарие
Спереди Север Юг
За спиной Юг Север
Слева Запад Восток
Справа Восток Запад

Где восход солнце… Где закат…

Восходом называют тот самый момент появления первого края Солнца, которое появляется над горизонтом. А закатом, момент исчезновения верхнего края солнца над поверхностью горизонта.

Очень интересен факт того, что древние астрономы различали 3 вида восходов и закатов.Они получили названия: гелический, космический и акрониктический

  • Если время восхода/заката звезды, падало в утренние/вечерние сумерки, то восход/закат звезды называли гелическим;
  • время восхода/заката звезды, совпадавшее с восходом/закатом Солнца, они называли космическим восходом/или закатом;
  • время восхода /заката звезды, совпадавшее со временем заката/восхода солнца, — акрониктическим восходом/закатом.

Широта местности

Как и было сказано ранее, в средних широтах в истинный полдень Солнце всегда проходит через южное направление. Но давайте посмотрим, поменяется ли картина, если наблюдающий Солнце человек окажется севернее или южнее указанных широт. Для этого рассмотрим несколько ключевых вариантов.

Вариант №1 — средние широты южного полушария. Здесь во время истинного полдня Солнце окажется строго на севере.

О том, что Солнце в полдень бывает не только на юге, но и на севере, к сожалению, написано далеко не во всех учебниках по туризму. А ведь, благодаря различным авиакомпаниям, современные туристы могут путешествовать не только по своим родным просторам, но и запросто оказаться в противоположной точке земного шара, где правила ориентирования, описываемые в литературе, не будут работать подобающим образом.

В одно и то же время Солнце будет находиться на разной высоте на одинаковых широтах в разных полушариях.

Вариант №2 — верхняя граница тропической зоны северного полушария. На этих территориях в течение всего года кроме дня летнего солнцестояния в истинный полдень Солнце будет находиться на юге, а в описанный день — строго над головой. Как понимаете, найти юг, а соответственно и другие стороны света по Солнцу в последнем случае не удастся, если конечно рассматривать только способ ориентирования по Солнцу в полдень.

Вариант №3 — нижняя граница тропической зоны южного полушария. Здесь на протяжении всего года, кроме дня зимнего солнцестояния, Солнце в истинный полдень будет находиться на севере, как и в средних широтах этого полушария. Однако в указанный декабрьский день оно окажется в зените строго над головой, что не позволит быстро сориентироваться по нему.

Вариант №4 — линия экватора. В этой зоне возможны три варианта, которые будут сменять друг друга в течение года. От момента осеннего равноденствия до весеннего равноденствия Солнце в истинный полдень будет находиться на юге, в период от весеннего до осеннего равноденствия — на севере. А в сами дни равноденствия окажется строго над головой, вызвав сложности в ориентировании.

Получается, что в точках перехода тропических зон в умеренные Солнце стоит в зените, то есть точно над головой наблюдателя, всего один раз в год, а ближе к экватору это явление можно наблюдать за год дважды.

Не зная собственного положения на местности, практически невозможно сказать, находится Солнце точно в зените, или нет, без дополнительных построений.

Доводилось встречать мнение, что на экваторе солнце круглый год ежедневно в полдень находится в зените. Но, как мы теперь понимаем, это предположение ошибочно. В этом регионе оно в полдень около полгода находится на севере, а полгода на юге. И если даже считать зенитом не положение Солнца строго над головой, а наивысшую точку его траектории (что тоже верно), тогда вышеуказанное мнение не имеет особого смысла, поскольку Солнце в этом случае не только на экваторе, а и в любой другой точке планеты ежедневно целый год в полдень будет находиться в зените.

В некоторых тропических городах люди могут наблюдать интересную картину: в полдень вертикальные прямые предметы, например, столбы и заборы, перестают отбрасывать тень. Это связано с тем, что Солнце в этот момент находится строго над ними, а солнечные лучи и тени от предметов падают отвесно. В видео объяснено это явление:

https://youtube.com/watch?v=UiATyp95huc

Существует еще один вариант — высокие широты северного и южного полушарий. Здесь Солнце будет себя вести так же, как в средних широтах, однако в период полярной ночи наблюдать его над горизонтом, а значит и сориентироваться по нему, не получится.

Как видим, без понимания процессов, лежащих в основе этих различий, можно легко запутаться и допустить серьезные ошибки, вплоть до того, что спутать север с югом. А это для путешественника, оставшегося без современных средств навигации в дикой природе, иногда может быть равноценно смерти.

Вселенная крутится, как юла. Астрономы обнаружили следы вращения мироздания.

До сих пор большинство исследователей склонялось к мнению, что наше мироздание статично. Или если и движется, то чуть-чуть. Каково же было удивление команды ученых из Мичиганского университета (США) во главе с профессором Майклом Лонго, когда они обнаружили в космосе явные следы вращения нашего мироздания. Выходит, с самого начала, еще при Большом взрыве, когда только рождалась Вселенная, она уже вращалась. Как будто кто-то запустил ее, как юлу. И она до сих пор крутится-вертится.

Исследования велись в рамках международного проекта «Цифровой обзор неба Слоана» (Sloan Digital Sky Survey). И этот феномен ученые обнаружили, каталогизировав направление вращения около 16 000 спиральных галактик со стороны северного полюса Млечного Пути. Вначале ученые пытались найти доказательства того, что Вселенная обладает свойствами зеркальной симметрии. В таком случае, рассуждали они, количество галактик, которые вращаются по часовой стрелке, и тех, что «закручены» в противоположном направлении, было бы одинаковым, сообщает pravda.ru.

Но оказалось, что по направлению к северному полюсу Млечного пути среди спиральных галактик преобладает вращение против часовой стрелки, то есть они ориентированы в правую сторону. Эта тенденция просматривается даже на расстоянии более 600 миллионов световых лет.

— Нарушение симметрии небольшое, всего около семи процентов, но вероятность того, что это такая космическая случайность — где-то около одной миллионной, — прокомментировал профессор Лонго. — Полученные нами результаты очень важны, поскольку они, похоже, противоречат практически всеобщему представлению о том, что если взять достаточно большой масштаб, то Вселенная будет изотропной, то есть не будет иметь выраженного направления.

По словам специалистов, симметричная и изотропная Вселенная должна была возникнуть из сферически симметричного взрыва, который по форме должен был напоминать баскетбольный мяч. Однако, если бы при рождении Вселенная вращалась вокруг своей оси в определенном направлении, то галактики сохранили бы это направление вращения. Но, раз они вращаются в разных направлениях, следовательно, и Большой взрыв имел разностороннюю направленность. Тем не менее, скорее всего, Вселенная до сих пор продолжает вращаться.

В общем-то, астрофизики и раньше догадывались о нарушении симметрии и изотропности. Их догадки были основаны на наблюдениях других гигантских аномалий. К ним относятся следы космических струн — невероятно протяженные дефекты пространства-времени нулевой толщины, гипотетически родившиеся в первые мгновения после Большого взрыва. Появлении «синяков» на теле Вселенной — так называемых отпечатков от прошлых ее столкновений с другими вселенными. А также движение «Темного потока» — огромных размеров поток галактических кластеров, несущихся на огромной скорости в одном направлении.

Теоретические основы

Здесь перечислим аксиомы, доказанные факты и некоторые выводы, следующие из них.

Истина №1. Земля вращается вокруг Солнца.

Истина №2. Вращение Земли, если смотреть сверху на северный полюс, осуществляется против часовой стрелки. Из этого следует вывод, что Солнце в начале освещает более восточные регионы. Для наблюдателя же, находящегося на Земле, это выглядит так, как будто Солнце встает на востоке и садится на западе.

Из этой же истины следует, что Солнце в середине своего движения, то есть в промежутке между востоком и западом, что соответствует середине дня, для наблюдателя будет находиться в самой высшей точке своей траектории движения — зените. В это же время оно будет находиться на линии север–юг.

Если представить, что наблюдатель находится в северном полушарии, то получится, что Солнце для него движется по небесной сфере слева направо. Если же наблюдатель переместится в южное полушарие (например, в Австралию), тогда движение Солнца для него будет справа налево. Но это правило четко работает только в средних и высоких широтах, а в тропических зонах и на экваторе оно может изменяться, в связи с явлением, о котором расскажем далее.

Истина №3. Ось вращения Земли наклонена по отношению к Солнцу на угол 23,44 градуса. Это в сочетании с тем, что Земля вращается вокруг Солнца, приводит к тому, что в разное время года для наблюдателя, находящегося в одной точке Земли, траектория движения Солнца по небесной сфере будет смещаться то выше, то ниже.

При более высоком положении Солнца над горизонтом его лучи будут падать на поверхность Земли под более тупым углом, а значит на единицу площади попадет больше света, чем в случае с более низким положением Солнца, — на этой территории потеплеет и со временем настанет лето. Обратный процесс приведет к похолоданию и наступлению зимы.

Из-за наклона земной оси получается, что когда в северном полушарии наступает зима, в южное полушарие приходит лето, и наоборот.

Понимая эти процессы, несложно догадаться, что Солнце будет восходить строго на востоке и заходить строго на западе только в дни весеннего и осеннего равноденствий, когда длина дня равна длине ночи. С марта по сентябрь Солнце будет подниматься на северо-востоке и садиться на северо-западе, а в период с сентября по март будет всходить на юго-востоке и садиться за горизонт на юго-западе.

Чтобы сказать, где Солнце будет в полдень, нужно знать, в какой точке Земли будет находиться наблюдатель.

Для примера рассмотрим период с июня по декабрь в северном полушарии. В этот период в средних и высоких широтах Солнце будет на юге. На экваторе Солнце будет вначале на севере, а затем окажется на юге. В районе тропиков картина будет схожа с картиной на экваторе за тем только исключением, что в северной стороне Солнце будет меньшее количество дней, и тем более будет выражено это различие, чем дальше от экватора и ближе к умеренной зоне будет находиться наблюдатель.

В период с июня по декабрь в северном полушарии будет наблюдаться обратная картина. Отметим, что стабильность будет только в средних и высоких широтах: здесь Солнце в течение всего года в полдень будет находиться на юге.

Глядя на эту схему, можно просчитать нахождение полуденного Солнца и в южном полушарии. Здесь по сравнением с северным полушарием все будет наоборот.

Истина №4. Земля вращается с угловой скоростью примерно 15 градусов в час. Поэтому и наблюдаемое с Земли движение Солнца по небосводу происходит примерно с той же скоростью.

Истина №5. Если стать лицом к северу, то за спиной окажется юг, справа — восток, а слева — запад.

Ну вот, с теоретической частью разобрались, а значит пора переходить непосредственно к рассмотрению методов ориентирования по Солнцу.

Как ориентироваться днем по Солнцу?

Определяем направления света по положению Солнца на небе
Опубликовано: 07/12/2016 (Обновлено: 06/04/2020)

Ориентировка по полуденному положению Солнца

Каждый день ровно в 12 часов по солнечному времени Солнце бывает точно на юге, однако стоит помнить одну деталь: то время, по которому мы живем, то есть которое показывают наши часы, это — не солнечное время.

Причем для разных городов солнечное время по-разному отличается от времени, показываемого часами. В среднем же наши часы идут на 1 час впереди солнечного времени. Поэтому по нашим часам Солнце бывает на юге не в 12 часов, а около 13 часов.

Следовательно, получается такое правило:

Если около 13 часов встать лицом к Солнцу, то впереди будет юг, справа—запад, слева — восток и сзади — север.

Ориентировка по сторонам света, по полуденному положению Солнца

Когда Солнце бывает на юге, оно стоит выше всего над горизонтом, и в это время тени от предметов самые короткие. Поэтому можно совершенно точно определить положение сторон горизонта, наблюдая за изменением длины тени какого-нибудь предмета.

Как с помощью нехитрых наблюдений и простейших вычислений можно точно вычислить диаметр нашей планеты? Подробнее об этом

Около 12 часов дня воткните в землю палку (строго вертикально!). Следите за тенью палки и отмечайте время от времени положение тени колышком, камешком и т. п.; вы увидите, что тень поворачивается, и при этом сначала она будет укорачиваться, потом станет удлиняться.

Направление самой короткой тени в полдень – это направление строго на север

Направление самой короткой тени – и есть направление точно на север. Запомните это направление по какому-нибудь предмету, стоящему далеко от вас (дом, дерево, кусты и т. п.).

Если момент, когда тень была самой короткой, будет по какой либо причине пропущен, то можно поступить так: отметьте два положения тени от отвесно стоящей палки — одно до полудня, другое после полудня, когда длина тени будет одинаковой. Направление па север лежит точно посредине между направлениями этих одинаковых теней.

Ориентировка по месту восхода и захода Солнца.

  • Около 22 марта и около 22 сентября Солнце восходит точно на востоке и заходит точно на западе.
  • Зимой (в декабре) Солнце восходит на юго-востоке и заходит на юго-западе.
  • Летом (в июле) Солнце восходит па северо-востоке и заходит на северо-западе.

Зная это, можно найти стороны горизонта по месту восхода или захода Солнца. Чтобы запомнить это место горизонта, следует заметить какой-нибудь предмет, находящийся по направлению к месту восхода или захода.

Ориентировка по положению Солнца.

Если у вас есть часы и видно Солнце, то можно воспользовался следующим способом. Часы поворачивают так, чтобы часовая стрелка была направлена к Солнце. Прямая, проведенная через центр циферблата и делящая пополам угол между часовой стрелкой и 1 часом на циферблате, показывает на юг.

Ориентировка по положению Солнца с помощью наручных часов

Для приближенной ориентировки по положению Солнца полезно запомнить следующее:

  • около 7 часов Солнце бывает на востоке;
  • около 10 часов Солнце бывает на юго-востоке;
  • около 13 часов Солнце бывает на юге;
  • около 16 часов Солнце бывает на юго-западе;
  • около 19 часов Солнце бывает на западе.

Примечание. Зимой Солнце не бывает видно на востоке, так как оно восходит позже 7 часов, и не бывает видно на западе, так как оно заходит раньше 19 часов.

Где заходит Солнце и где оно восходит?

Если рассматривать Северное полушарие, то летом Солнце восходит между севером и востоком, а заходит между севером и западом. Зимой встает между югом и востоком, а заходит между западом и югом. Осенью и весной Солнце встает между северо-востоком и юго-востоком, а заходит между северо-западом и юго-западом. В дни осеннего и весеннего равноденствия, как уже было отмечено, оно восходит и заходит строго на востоке и западе соответственно.

В Южном полушарии все наоборот. Этим и объясняется отличие времен года.

Необходимо упомянуть о том, что контраст между ночью и днем тем выше, чем севернее располагается рассматриваемая местность в Северном полушарии, и чем южнее в Южном. То есть, если сформировать определенное правило, то оно будет звучать так: чем ближе территория к полюсу, тем сильнее будет проявляться разница ночи и дня. И соответственно чем ближе территория к экватору, тем меньше проявляется разница дня и ночи.

Если рассматривать на конкретном примере, то на полюсах ночи длятся по нескольку месяцев, как и дни. А на экваторе разницы между ночью и днем практически нет. Из-за этого на экваторе никогда не бывает зимы и лета, здесь всегда одинаковая освещенность.

Сколько длится подготовка к космической миссии

Кажется, что такая ракета может долететь куда угодно.

Запуск зонда в августе 2018 года стал кульминацией более 50 лет разработок и планирования этой космической миссии. О том, что температура солнечной короны может достигать миллиона градусов Цельсия научное сообщество выяснило еще в 40-х годах прошлого века. Подтверждение существования так называемого солнечного ветра (высокозаряженных ионизированных частиц плазмы, выбрасываемых короной) состоялось в 60-х годах. Однако ученые до сих пор не могут понять, почему температура короны Солнца гораздо выше температуры поверхности звезды. Кроме того, непонятно что именно ускоряет частицы солнечного ветра. Ответы на эти вопросы можно будет получить только при непосредственном контакте с солнечной короной, считают исследователи.

Идея провести подобное исследование впервые была предложена еще в 1958 году. С тех пор несколько космических аппаратов приближались к Солнцу, но ни один из них не сближался со звездой настолько, насколько по прогнозам это должен сделать солнечный зонд «Паркер».

Виды полушарий, различия между ними

Зеленая планета условно поделена на 4 полушария: Северное, Южное разделяют землю по экватору. Западное и Восточное определяются по Гринвичскому и 180⁰ меридианам. Северное и Южное «отвечают» за времена года. Смена времен года происходит из-за вращения нашей планеты вокруг Солнца и неравномерного освещения. В то время, когда на Северном полушарии зима, на Южном продолжается лето. И наоборот – когда Южное полушарие засыпано снегом – в Северном царит жара.


Виды полушарий

В Северном полушарии восход и закат Солнца наблюдают в таких направлениях:

Весна Лето Осень Зима
Восход Северо-восток Северо-восток Юго-восток Юго-восток
Закат Северо-запад Северо-запад Юго-запад Юго-запад

Чтобы засечь восход строго на востоке, а заход на западе, нужно дождаться весеннего или осеннего равноденствия, 20 марта, или 23 сентября.

Еще 2 особые дня в году, которые важно запомнить: «дни солнцестояния». Это те, в которых небесное светило стоит над Землей или максимально высоко, или максимально низко

Соответствуют 21-22 декабря (зимнее) и 20-21 июня (летнее солнцестояние).

Ориентирование – полезный навык не только для туристов, а для каждого, интересующегося элементарной навигацией. Вот как определить нужное направление, если человек находится в Северном или Южном полушарии:

Становятся спиной к Солнцу, лицом к собственной тени
Северное полушарие Южное полушарие
Спереди Север Юг
За спиной Юг Север
Слева Запад Восток
Справа Восток Запад

Меркурий

Планета, положение которой ближе всего к Солнцу – Меркурий.   Атмосфера планеты Меркурий очень тонкая, поэтому в течение суток температура на ее поверхности может достигать 430 ºC.

Поверхность планеты Меркурий имеет множество кратеров. Размер планеты Меркурий намного меньше размера Земли и она является самой маленькой в Солнечной системе. Это небесное тело можно увидеть в небе жители южных стран в то время, когда взойдет солнце и наступит закат.

В северных широтах  в России лучше всего увидеть Меркурий  весной, тогда он визуализируется по вечерам, или осенью рано утром. Это связано с тем что это планета солнечной системы по порядку от Cолнца первая и оно мешает наблюдению. Меркурий не имеет спутника.

Планета Расстояние от планеты до Солнца (млн. км) Диаметр(км) Температура поверхности(ºC)
от до
Меркурий 58 4,900 -170 430

Тень и ориентирование на местности

Есть еще один способ ориентирования по тени

В незнакомых местах при возникновении данной необходимости нужно брать во внимание разные небесные светила. Ночью это может быть полярная звезда, а днем – солнце

Понимая, с какой стороны заходит солнце, можно определить другие стороны света и выбрать правильное направление пути. К примеру, в северных широтах, когда наступает время летних ночей, зашедшее солнце находится близко к горизонту. Поэтому небо с северной стороны более светлое, чем на юге.

Известно, что наиболее высокое солнечное положение можно определить по самой короткой тени. Это соответствует полудню. Направление такой тени показывает на север. Так же и с луной: если она полная и занимает самое высокое положение над горизонтом — значит, находится на юге. Это время, когда света достаточно для того, чтобы хорошо различать тени. Аналогично при полнолунии — самая короткая тень. Это полночь. Направление тени укажет на север.

Какую форму имеет Млечный Путь?

При изучении галактик Эдвин Хаббл классифицировал их на различные виды эллиптических и спиральных. Спиральные галактики имеют форму диска, внутри которого находятся спиральные рукава. Поскольку Млечный путь имеет форму диска наряду со спиральными галактиками, логично предположить, что он, вероятно, является спиральной галактикой.

В 1930-х годах Р. Дж. Трюмплер понял, что оценки размера галактики Млечный Путь, совершенные Капетином и другими учеными, были ошибочными, поскольку измерения основывались на наблюдениях с помощью волн излучения в видимой области спектра. Трюмплер пришел к выводу, что огромное количество пыли в плоскости Млечного Пути поглощает свет видимого излучения. Поэтому далекие звезды и их скопления кажутся более призрачными, чем они есть на самом деле. В связи с этим, для получения точного изображения звезд и звездных скоплений внутри Млечного Пути, астрономы должны были найти способ видеть сквозь пыль.

В 1950-х годах были изобретены первые радиотелескопы. Астрономы обнаружили, что атомы водорода излучают радиацию в радиоволнах, и что такие радиоволны могут проникнуть сквозь пыль в Млечном Пути. Таким образом, стало возможно увидеть спиральные рукава этой галактики. Для этого использовалась пометка звезд по аналогии с пометками при измерениях расстояний. Астрономы поняли, что звезды спектрального класса O и B могут послужить для достижения этой цели.

Такие звезды имеют несколько особенностей:

  • яркость – они весьма заметны и часто встречаются в небольших группах или объединениях;
  • тепло – они излучают волны разной длины (видимые, инфракрасные, радиоволны);
  • короткое время жизни – они живут около 100 миллионов лет. Учитывая скорость, с которой звезды вращаются в центре галактики, они не перемещаются далеко от места рождения.

Астрономы могут использовать радиотелескопы для точного сопоставления позиций звезд спектрального класса O и B, и, руководствуясь доплеровскими смещениями радиоспектра, определять скорость их движения. После проведения таких операций со многими звездами, ученые смогли выпустить комбинированные радио и оптические карты спиральных рукавов Млечного пути. Каждый рукав назван по имени созвездия, существующего в нем.

Астрономы считают, что движение материи вокруг центра галактики создает волны плотности (области высокой и низкой плотности), такие же, как вы видите, перемешивая тесто на торт электрическим миксером. Полагается, что эти волны плотности вызвали спиральный характер галактики.

Таким образом, рассматривая небо в волнах разной длины (радио, инфракрасные, видимые, ультрафиолетовые, рентгеновские) с помощью различных наземных и космических телескопов, можно получить различные изображения Млечного Пути.