Содержание
- Средняя скорость.
- Примеры решения задач
- Скорость
- Сложение скоростей
- Закон равноускоренного движения
- Свободное падение (ускорение свободного падения)
- Равноускоренное движение
- Обобщения
- Единицы измерения скорости
- Закон сложения скоростей
- Примечания[ | код]
- Преобразование скорости[ | код]
- Скорости в природе и технике[ | код]
- Равномерное движение
- Основные понятия
Средняя скорость.
В случае если перемещение тела происходит равномерно, то одной из характеристик может быть средняя скорость. Такое понятие поможет установить значение скорости на конкретных частях пройденного пути. Многие ученые не считают данную характеристику точной, она кажется приближенной к действительности. Это связано с тем, что средняя скорость действительно не может отразить точных параметром движения. Так как средняя скорость является равномерной, она не может применяться для отражения неравномерного перемещения. Однако скорость не может изменяться в виде скачков, даже незначительные замедления могут повлиять на всю картину.
Если представить график, который отразит средние скорости, имеющимися у тела, осуществляющего перемещение, то он будет выглядеть как подъемы и падения кривой, это стандартная ломаная линия. Ее звенья будут иметь различный наклон.
Если взять во внимание определенную материальную точку, которая будет перемешаться параллельно прямой, не совпадающей с координатными осями, то ее нахождение можно определить. В этом поможет формула, в которой есть понятие радиус-вектора и время
В момент времени t2 положение материальной точки в пространстве определяет вектор r>2. Отсюда легко определить, по какому вектору перемещается та или иная материальная точка.
Определение 1.
Средняя скорость определяется формулой.
Из нее можно заметить, что вектор делится на скалярную величину. Результатом является тот факт, что его вектор совпадает с вектором, который определяет перемещение. Данные величины имеют идентичные направления.
Примеры решения задач
Пример
Задание. Какова средняя скорость материальной точки за время ее движения, если точка прошла первую половину
пути имея скорость v1, остальную часть пути данная точка 1/2 времени двигалась со скоростью v2, последний
участок пути точка двигалась со скоростью v3.
Решение. В качестве основы для решения задачи формулу:
$$\langle v\rangle=\frac{s}{\Delta t}(1.1)$$
где время потраченное на путь ($\Delta t$) делится на три части:
$$\Delta t=t_{1}+t_{2}+t_{3}(1.2)$$
При этом имеют место следующие соотношения между отрезками пути, скоростью их преодоления и временем:
$$\left\{\begin{array}{c}\frac{1}{2} s=v_{1} t_{1} \rightarrow t_{1}=\frac{s}{2 v_{1}} \\ \frac{1}{2} s=v_{2} t_{2}+v_{3} t_{3} \rightarrow t_{3}=\frac{s}{2\left(v_{2}+v_{3}\right)}(1.3) \\ t_{2}=t_{3}=\frac{1}{2} t\end{array}\right.$$
$$\langle v\rangle=\frac{2 v_{1}\left(v_{2}+v_{3}\right)}{v_{2}+v_{3}+2 v_{1}}$$
Ответ. $\langle v\rangle=\frac{2 v_{1}\left(v_{2}+v_{3}\right)}{v_{2}+v_{3}+2 v_{1}}$
Слишком сложно?
Формула средней скорости не по зубам? Тебе ответит эксперт через 10 минут!
Пример
Задание. Какова средняя скорость частицы, движущейся по оси Xза время в течение которого, она пройдет первые
s метров пути, если функция скорости задана уравнением: $v=A \sqrt{x}$,
где A=const>0. Считать, что x=0 при t=0.
Решение. Сделаем рисунок.
В качестве основы для решения задачи используем формулу для средней путевой скорости, так как движение прямолинейное,
то средняя путевая скорость равна модулю вектора средней скорости. По условию задачи точка движется по оси X, тогда:
$$\langle v\rangle(t+\Delta t)=\frac{\Delta x}{\Delta t}(2.1)$$
По условиям x(t=0)=0, среднюю скорость ищем, когда тело находится в точкеx=sследовательно, выражение (2.1) преобразуем к виду:
$$\langle v\rangle=\frac{s}{t}(2.2)$$
Найдем зависимость скорости от времени, исходя из определения мгновенной скоростидля движения точки по оси X:
$$v=\frac{d x}{d t}=A \sqrt{x}(2.3)$$
Выразим из (2.2) x:
$$\frac{d x}{\sqrt{x}}=A d t \rightarrow x=\frac{A^{2} t^{2}}{4}(2.4)$$
Так как движение происходит по оси X, то $x=s=\frac{A^{2} t^{2}}{4}$ . Выразим время, которое точка затратила на путьs :
$$t=\frac{2 \sqrt{s}}{A}(2.5)$$
Подставим время из (2.4) в формулу (2.2):
$$\langle v\rangle=\frac{A}{2} \sqrt{s}$$
Ответ. $\langle v\rangle=\frac{A}{2} \sqrt{s}$
Читать дальше: Формула угловой скорости.
Скорость
Двигаться со скоростью черепахи — значит медленно, а со скоростью света — значит очень быстро. Сейчас узнаем, как пишется скорость в математике и как ее найти по формуле.
Скорость определяет путь, который преодолеет объект за единицу времени. Скорость обозначается латинской буквой v.
Проще говоря, скоростью называют расстояние, пройденное телом за единицу времени.
Впервые формулу скорости проходят на математике в 5 классе. Сейчас мы ее сформулируем и покажем, как ее использовать.
Формула скорости Чтобы найти скорость, нужно разделить путь на время: v = s : t |
Показатели скорости чаще всего выражаются в м/сек или км/час.
Скорость сближения — это расстояние, которое прошли два объекта навстречу друг другу за единицу времени. Чтобы найти скорость сближения, нужно сложить скорости объектов.
Скорость удаления — это расстояние, которое увеличивается за единицу времени между двумя объектами, которые движутся в противоположных направлениях.
Чтобы найти скорость удаления, нужно сложить скорости объектов.
Чтобы найти скорость удаления при движении в одном направлении, нужно из большей скорости вычесть меньшую скорость.
Сложение скоростей
Скорости движения тела в различных системах отсчёта связывает между собой классический
закон сложения скоростей.
Скорость тела относительно неподвижной системы отсчёта равна сумме
скоростей тела в подвижной системе отсчёта и самой подвижной системы
отсчёта относительно неподвижной.
Например, пассажирский поезд движется по железной дороге со скоростью 60 км/ч.
По вагону этого поезда идет человек со скоростью 5 км/ч. Если считать железную
дорогу неподвижной и принять её за систему отсчёта, то скорость человека относительно
системы отсчёта (то есть относительно железной дороги), будет равна сложению
скоростей поезда и человека, то есть
60 + 5 = 65, если человек идёт в том же направлении, что и поезд
60 – 5 = 55, если человек и поезд движутся в разных направлениях
Однако это справедливо только в том случае, если человек и поезд движутся по одной линии.
Если же человек будет двигаться под углом, то придётся учитывать этот угол, вспомнив о том,
что скорость – это векторная величина.
А теперь рассмотрим описанный выше пример более подробно – с деталями и картинками.
Итак, в нашем случае железная дорога – это неподвижная система отсчёта.
Поезд, который движется по этой дороге – это подвижная система отсчёта.
Вагон, по которому идёт человек, является частью поезда.
Скорость человека относительно вагона (относительно подвижной системы отсчёта) равна 5 км/ч.
Обозначим её буквой Ч.
Скорость поезда (а значит и вагона) относительно неподвижной системы отсчёта
(то есть относительно железной дороги) равна 60 км/ч. Обозначим её буквой
В. Иначе говоря, скорость
поезда – это скорость подвижной системы отсчёта относительно неподвижной системы отсчёта.
Скорость человека относительно железной дороги (относительно неподвижной системы отсчёта)
нам пока неизвестна. Обозначим её буквой .
Свяжем с неподвижной системой отсчёта (рис. 1.7) систему координат ХОY,
а с подвижной системой отсчёта – систему координат XПОПYП
(см. также раздел ).
А теперь попробуем найти скорость человека относительно неподвижной системы отсчёта,
то есть относительно железной дороги.
За малый промежуток времени Δt происходят следующие события:
- Человек перемещается относительно вагона на расстояние Ч
- Вагон перемещается относительно железной дороги на расстояние B
= Ч + B
Это закон сложения перемещений. В нашем примере перемещение человека
относительно железной дороги равно сумме перемещений человека относительно вагона и
вагона относительно железной дороги.
Рис. 1.7. Закон сложения перемещений.
Закон сложения перемещений можно записать так:
ЧB
Скорость человека относительно железной дороги равна:
= / Δt
= Ч + B
то
Скорость человека относительно вагона:
ΔЧ = Ч / Δt
ΔB = B / Δt
= ΔЧ + ΔB
сложения скоростей
Скорость тела относительно неподвижной системы отсчёта равна сумме скоростей тела в подвижной системе отсчёта и скорости самой подвижной системы отсчёта относительно неподвижной.
Закон равноускоренного движения
Закон равноускоренного движения
y=y+vt+at22.
Еще одна распространенная задача кинематики, которая возникает при анализе равноускоренного движения — нахождение координаты при заданных значениях начальной и конечной скоростей и ускорения.
Исключая из записанных выше уравнений t и решая их, получаем:
s=v2-v22a.
По известным начальной скорости, ускорению и перемещению можно найти конечную скорость тела:
v=v2+2as.
При v= s=v22a и v=2as
Важно!
Величины v, v, a, y, s, входящие в выражения, являются алгебраическими величинами. В зависимости от характера движения и направления координатных осей в условиях конкретной задачи они могут принимать как положительные, так и отрицательные значения.
Всё ещё сложно?
Наши эксперты помогут разобраться
Все услуги
Решение задач
от 1 дня / от 150 р.
Курсовая работа
от 5 дней / от 1800 р.
Реферат
от 1 дня / от 700 р.
Свободное падение (ускорение свободного падения)
Свободное падение – это движение тела в безвоздушном пространстве под действием только силы тяжести.
Все тела при свободном падении независимо от массы падают с одинаковым ускорением, называемым ускорением свободного падения.
Ускорение свободного падения всегда направлено к центру Земли (вертикально вниз).
Обозначение – \( g \), единицы измерения – м/с2.
Важно! \( g \) = 9,8 м/с2, но при решении задач считается, что \( g \) = 10 м/с2
Движение тела по вертикали
Тело падает вниз, вектор скорости направлен в одну сторону с вектором ускорения свободного падения:
Если тело падает вниз без начальной скорости, то \( v_0 \) = 0.
Время падения рассчитывается по формуле:
Тело брошено вверх:
Если брошенное вверх тело достигло максимальной высоты, то \( v \) = 0.
Время подъема рассчитывается по формуле:
Движение тела, брошенного горизонтально
Движение тела, брошенного горизонтально, можно представить как суперпозицию двух движений:
- равномерного движения по горизонтали со скоростью \( v_0=v_{0x} \);
- равноускоренного движения по вертикали с ускорением свободного падения \( g \) и без начальной скорости \( v_{0y}=0 \).
Уравнение скорости:
Уравнение координаты:
Скорость тела в любой момент времени:
Дальность полета:
Угол между вектором скорости и осью ОХ:
Движение тела, брошенного под углом к горизонту (баллистическое движение)
Движение тела, брошенного под углом к горизонту, можно представить как суперпозицию двух движений:
- равномерного движения по горизонтали;
- равноускоренного движения по вертикали с ускорением свободного падения.
Уравнение скорости:
Уравнение координаты:
Скорость тела в любой момент времени:
Угол между вектором скорости и осью ОХ:
Время подъема на максимальную высоту:
Максимальная высота подъема:
Время полета:
Максимальная дальность полета:
Важно!
При движении вверх вертикальная составляющая скорости будет уменьшаться, т. е
тело вдоль вертикальной оси движется равнозамедленно.
При движении вниз вертикальная составляющая скорости будет увеличиваться, т. е. тело вдоль вертикальной оси движется равноускоренно.
Скорость \( v_0 \), с которой тело брошено с Земли, будет равна скорости, с которой оно упадет на Землю. Угол \( \alpha \), под которым тело брошено, будет равен углу, под которым оно упадет.
При решении задач на движение тела, брошенного под углом к горизонту, важно помнить, что в точке максимального подъема проекция скорости на ось ОУ равна нулю:
Это облегчает решение задач:
Равноускоренное движение
Если в течение времени положение тела изменяется относительно предметов, находящихся в покое, то считается, что оно движется. При этом в качестве основного параметра, описывающего перемещение, используется скорость. Движение тела или точки можно представить в виде линии, повторяющей путь прохождения. Называется она траекторией. Если линия прямая, то движение считается прямолинейным.
Неравномерное движение характеризуется перемещением по различной траектории с непостоянной величиной скорости. При этом изменение положения может быть равноускоренным, то есть параметр на одинаковых промежутках увеличивается или уменьшается на одно и то же значение. В качестве примера можно привести падение камня.
Таким образом, если векторы V и ускорения A лежат вдоль прямой, то в проекциях такое направление можно рассматривать как алгебраические величины. При равноускоренном движении по прямой траектории скорость точки вычисляется по формуле: V = V0 + A*t. Где:
- V0 — начальная скорость;
- A — ускорение (имеет постоянное значение);
- t — время движения.
Это основная формула в физике. На графике она изображается как прямая линия v (t). По оси ординат откладывается время, а абсцисс — скорость. Построив график, по наклону прямой можно определить ускорение точки A. Для этого используется формула нахождения сторон треугольника: A = (v-v0) / t.
Если на оси времени выделить промежуток Δt, то можно предположить, что движение будет равномерным и описываться некоторым параметром, равным мгновенному значению в середине отрезка. Эта моментальная величина является векторной. Она численно равна пределу, который пытается достигнуть скорость за промежуток времени, стремящийся к нулю. В физике это состояние описывается формулой мгновенной скорости: V = lim (Δ s/ Δ t) = r-1(t). То есть, с математической точки зрения, это первая производная.
Из этой формулы можно вывести выражение для нахождения конечной скорости материальной точки: V = (V20 — 2* A * s)½. Если же в начальный момент V0 = 0, то формулу можно упростить до вида: V = (2* A * s)½.
Обобщения
Обобщениями понятия скорости является четырёхмерная скорость, или скорость в релятивистской механике, и обобщённая скорость, или скорость в обобщённых координатах.
Четырёхмерная скорость
В специальной теории относительности каждому событию ставится в соответствие точка пространства Минковского, три координаты которого представляют собой декартовы координаты трёхмерного евклидова пространства, а четвёртая ― временну́ю координату ct{\displaystyle ct}, где c{\displaystyle c} ― скорость света, t{\displaystyle t} ― время события. Компоненты четырёхмерного вектора скорости связаны с проекциями трёхмерного вектора скорости следующим образом:
- v=c1−v2c2;v1=vx1−v2c2;v2=vy1−v2c2;v3=vz1−v2c2.{\displaystyle v_{0}={\frac {c}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}};v_{1}={\frac {v_{x}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}};v_{2}={\frac {v_{y}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}};v_{3}={\frac {v_{z}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}.}
Четырёхмерный вектор скорости является времениподобным вектором, то есть лежит внутри светового конуса.
В обобщённых координатах
Следует различать координатную и физическую скорости. При введении криволинейных или обобщённых координат положение тел описывается их зависимостью от времени. Производные от координат тела по времени при этом называются координатными скоростями.
Единицы измерения скорости
Линейная скорость:
- Метр в секунду, (м/с), производная единица системы СИ
- Километр в час, (км/ч)
- узел (морская миля в час)
- Число Маха, 1 Мах равен скорости звука; Max n в n раз быстрее. Как единица, зависящая от конкретных условий, должна дополнительно определяться.
- Скорость света в вакууме (обозначается c)
Угловая скорость:
- Радианы в секунду, принята в системах СИ и СГС. Физическая размерность 1/с.
- Обороты в секунду (в технике)
- градусы в секунду, грады в секунду
Соотношения между единицами скорости
- 1 м/с = 3,6 км/ч
- 1 узел = 1,852 км/ч = 0,514 м/c
- Мах 1 ~ 330 м/c ~ 1200 км/ч (зависит от условий, в которых находится воздух)
- c = 299 792 458 м/c
Закон сложения скоростей
Как уже упоминалось в предыдущем уроке, скорость тела зависит от выбранной наблюдателем системы отсчета. Разберем следующий пример: в безветренную погоду пчела летит со скоростью относительно земли. Это будет собственная скорость пчелы. Затем погода меняется и начинает дуть ветер, перпендикулярный скорости пчелы. Скорость ветра обозначена (см. рисунок 1).
Рисунок 1 – Первоначальная скорость пчелы и ветра
Естественно, что ветер начнет сдувать пчелу с первоначального курса. Собственная скорость не изменяется, так как это характеристика самой пчелы, но ее скорость относительно земли (по модулю и направлению) изменится и станет (см. рисунок 2):
Рисунок 2 – Изменившаяся скорость пчелы
Систему отсчета, связанную с землей, можно считать неподвижной. Если же рассматривать движение пчелы относительно воздуха, можно говорить о движущейся со скоростью v2 системе отсчета.
Рисунок 3 – Векторы скорости и перемещений при движении пчелы при ветре
Примечания[ | код]
- , с. 15.
- , с. 154.
- , с. 15—17.
- , с. 154—155.
- , с. 163.
- , с. 152.
- , с. 46—47.
- ↑ Скорость // : / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- Главный редактор А. М. Прохоров. Импульс // Физический энциклопедический словарь. — Советская энциклопедия. — М., 1983. Физическая энциклопедия
- Главный редактор А. М. Прохоров. Кинетическая энергия // Физический энциклопедический словарь. — Советская энциклопедия. — М., 1983. Физическая энциклопедия
- Главный редактор А. М. Прохоров. Вращательное движение // Физический энциклопедический словарь. — Советская энциклопедия. — М., 1983. Физическая энциклопедия
- Главный редактор А. М. Прохоров. Ускорение // Физический энциклопедический словарь.. — 1983. Физическая энциклопедия
- ↑ , с. 21.
- , с. 34.
- , с. 29.
- , с. 31—32.
- , с. 32—34.
- ↑ , с. 35.
- , с. 35—36.
- , с. 37.
- , с. 37—38.
- , с. 43.
- , с. 45.
- , с. 51—52.
- , с. 59.
- , с. 68.
- , с. 77.
- , с. 91.
- , с. 96.
- , с. 72—73.
- , с. 64—66.
- Кабардин О.Ф., Орлов В.А., Пономарёва А.В. Факультативный курс физики. 8 класс. — М.: Просвещение, 1985. — Тираж 143 500 экз. — С. 44
- (англ.). Federation Internationale de l’Automobile (10 June 2012). Дата обращения: 3 декабря 2020.
Преобразование скорости[ | код]
В классической механике Ньютона скорости преобразуются при переходе из одной инерциальной системы отсчёта в другую согласно преобразованиям Галилея. Если скорость тела в системе отсчёта S{\displaystyle S} была равна v→{\displaystyle {\vec {v}}}, а скорость системы отсчёта S′{\displaystyle S’} относительно системы отсчёта S{\displaystyle S} равна u→{\displaystyle {\vec {u}}}, то скорость тела при переходе в систему отсчёта S′{\displaystyle S’} будет равна
- v→′=v→−u→.{\displaystyle {\vec {v}}’={\vec {v}}-{\vec {u}}.}
Для скоростей, близких к скорости света преобразования Галилея становятся несправедливы. При переходе из системы S{\displaystyle S} в систему S′{\displaystyle S’} необходимо использовать преобразования Лоренца для скоростей:
- vx′=vx−u1−(vxu)c2,vy′=vy1−u2c21−(vxu)c2,vz′=vz1−u2c21−(vxu)c2,{\displaystyle v_{x}’={\frac {v_{x}-u}{1-(v_{x}u)/c^{2}}},v_{y}’={\frac {v_{y}{\sqrt {1-{\frac {u^{2}}{c^{2}}}}}}{1-(v_{x}u)/c^{2}}},v_{z}’={\frac {v_{z}{\sqrt {1-{\frac {u^{2}}{c^{2}}}}}}{1-(v_{x}u)/c^{2}}},}
в предположении, что скорость u→{\displaystyle {\vec {u}}} направлена вдоль оси x{\displaystyle x} системы S{\displaystyle S}. Легко убедиться, что в пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.
Скорости в природе и технике[ | код]
Метры в секунду | |
---|---|
Скорость света | 299 792 458 |
Скорость движения самых далёких галактик | 1,4×108{\displaystyle 1{,}4\times 10^{8}} |
Скорость электронов в кинескопе телевизора | 1,×108{\displaystyle 1{,}0\times 10^{8}} |
Скорость движения Солнца по орбите вокруг центра Галактики | 2,3×105{\displaystyle 2{,}3\times 10^{5}} |
Скорость движения Земли по орбите вокруг Солнца | 3,×104{\displaystyle 3{,}0\times 10^{4}} |
Скорость искусственного спутника Земли | 8,×103{\displaystyle 8{,}0\times 10^{3}} |
Скорость движения Луны по орбите вокруг Земли | 1,×103{\displaystyle 1{,}0\times 10^{3}} |
Максимальная скорость пассажирского реактивного самолёта | 7,×102{\displaystyle 7{,}0\times 10^{2}} |
Средняя скорость молекулы азота при температуре 0 град С | 5,×102{\displaystyle 5{,}0\times 10^{2}} |
Максимальная скорость автомобиля | 3,4×102{\displaystyle 3{,}4\times 10^{2}} |
Максимальная скорость локомотива на железной дороге | 1,1×102{\displaystyle 1{,}1\times 10^{2}} |
Максимальная скорость полёта сокола | 1,×102{\displaystyle 1{,}0\times 10^{2}} |
Скорость гепарда | 3,1×101{\displaystyle 3{,}1\times 10^{1}} |
Рекорд скорости человека в беге на дистанции 100 м | 1,×101{\displaystyle 1{,}0\times 10^{1}} |
Рекорд скорости человека в ходьбе на 50 км | 3,4{\displaystyle 3{,}4} |
Скорость черепахи | 5,×10−2{\displaystyle 5{,}0\times 10^{-2}} |
Скорость улитки | 1,4×10−2{\displaystyle 1{,}4\times 10^{-2}} |
Равномерное движение
Равномерное движение – это движение, при котором тело за любые равные промежутки времени совершает равные перемещения.
Скорость при равномерном движении – величина, равная отношению перемещения к промежутку времени, за которое это перемещение произошло:
Проекция вектора скорости на ось ОХ:
Проекция вектора скорости на координатную ось равна быстроте изменения данной координаты:
График скорости (проекции скорости)
График скорости (проекции скорости) представляет собой зависимость скорости от времени:
График скорости при равномерном движении – прямая, параллельная оси времени.
График 1 лежит над осью \( t \), тело движется по направлению оси ОХ.
Графики 2 и 3 лежат под осью \( t \), тело движется против оси ОХ.
Перемещение при равномерном движении – это величина, равная произведению скорости на время:
Проекция вектора перемещения на ось ОХ:
График перемещения (проекции перемещения)
График перемещения (проекции перемещения) представляет собой зависимость перемещения от времени:
График перемещения при равномерном движении – прямая, выходящая из начала координат.
График 1 лежит над осью \( t \), тело движется по направлению оси ОХ.
Графики 2 и 3 лежат под осью \( t \), тело движется против оси ОХ.
По графику зависимости скорости от времени можно определить перемещение, пройденное телом за время \( t \). Для этого необходимо определить площадь фигуры под графиком (заштрихованной фигуры).
Координата тела при равномерном движении рассчитывается по формуле:
График координаты представляет собой зависимость координаты от времени: \( x=x(t) \).
График координаты при равномерном движении – прямая.
График 1 направлен вверх, тело движется по направлению оси ОХ:
График 2 параллелен оси ОХ, тело покоится.
График 3 направлен вниз, тело движется против оси ОХ:
Основные понятия
Наука, изучающая механическое движение без учёта причин, его вызвавших, называется кинематикой. При перемещении в физике принимается, что любой объект состоит из множества одинаково движущихся материальных точек. Поэтому вместо того, чтобы рассматривать тело в целом, изучается только поведение одной точки.
Любое движение описывается рядом параметров. К основным из них относят:
- Траекторию — линию, по которой происходит перемещение в пространстве.
- Пройденное расстояние — путь, ограниченный начальными и конечными координатами.
- Координаты — изменение положения точки в пространстве относительно принятого начала.
- Скорость — быстрота изменения положения.
- Ускорение — нарастание скорости во времени.
Под перемещением понимают движение за некий промежуток времени, описываемый вектором: ∆r = r — r0. Направление вектора принимается от положения материальной точки в начальный момент, к изменению её расположения в установленный. Скорость же представляет вектор, определяющий направление перемещения и быстроту изменения движения относительно начальных координат, то есть какого-либо тела отсчёта.
Движение принято разделять на два вида: прямолинейное и криволинейное. В качестве примера для первого вида можно привести езду поезда на ровном участке железной дороги, бег спринтера на короткие дистанции, перемещение воды в прямой трубе. В реальности же чаще приходится сталкиваться с криволинейным перемещением, таким как падение тела, полёт футбольного мяча после удара.
Неравномерность перемещения обозначает изменение быстроты движения. Физическая величина, определяемая как отношение пройденного пути ко времени, затраченному на движение, называется средней скоростью. Этот параметр специально ввели для описания неравномерного движения в физике.