Мягкая или твёрдая? спор о том, что находится внутри нейтронной звезды

Почему пульсары вращаются?

Медлительность для пульсара – одно вращение в секунду. Наиболее быстрые разгоняются до сотен оборотов в секунду и называются миллисекундными. Процесс вращения происходит, потому что звезды, из которых они образовались, также вращались. Но, чтобы добраться до такой скорости, нужен дополнительный источник.

Исследователи полагают, что миллисекундные пульсары сформировались при помощи воровства энергии у соседа. Можно заметить наличие чужого вещества, которое увеличивает скорость вращения. И это не очень хорошо для пострадавшего компаньона, который однажды может полностью поглотиться пульсаром. Такие системы называют черными вдовами (в честь опасного вида паука).

Художественная интерпретация связи между пульсаром и его спутником

Пульсары способны излучать свет в нескольких длинах волн (от радио до гамма-лучей). Но как они это делают? Ученые пока не могут найти точного ответа. Полагают, что за каждую длину волн отвечает отдельный механизм. Маякоподобные лучи состоят из радиоволн. Они отличаются яркостью и узостью и напоминают когерентный свет, где частицы формируют сфокусированный луч.

Чем быстрее вращение, тем слабее магнитное поле. Но скорости вращения достаточно, чтобы они излучали такие же яркие лучи, как и медленные.

Здесь отображены линии магнитного поля, вращающиеся вокруг пульсара. Фиолетовое свечение – гамма-лучи

Во время вращения, магнитное поле создает электрическое, которое способно привести заряженные частицы в подвижное состояние (электрический ток). Участок над поверхностью, где доминирует магнитное поле, называют магнитосферой. Здесь заряженные частицы ускоряются до невероятно высоких скоростей из-за сильного электрического поля. При каждом ускорении они излучают свет. Он отображается в оптическом и рентгеновском диапазоне.

А что с гамма-лучами? Исследования говорят о том, что их источник нужно искать в другом месте возле пульсара. И они будут напоминать веер.

Магнетары

Некоторые нейтронные звезды, названные источниками повторяющихся всплесков мягкого гамма-излучения — SGR, испускают мощные всплески «мягких» гамма-лучей через нерегулярные интервалы. Количество энергии, выбрасываемое SGR при обычной вспышке, длящейся несколько десятых секунды, Солнце может излучить только за целый год. Четыре известные SGR находятся в пределах нашей Галактики и только один — вне ее. Эти невероятные взрывы энергии могут быть вызваны звездо-трясениями — мощными версиями землетрясений, когда разрывается твердая поверхность нейтронных звезд и из их недр вырываются мощные потоки протонов, которые, увязая в магнитном поле, испускают гамма- и рентгеновское излучение.

Нейтронные звезды были идентифицированы как источники мощных гамма-всплесков после огромной гамма-вспышки 5 марта 1979 года, когда было выброшено столько энергии в течение первой же секунды, сколько Солнце излучает за 1 000 лет. Недавние наблюдения за одной из наиболее «активных» в настоящее время нейтронных звезд, похоже, подтверждают теорию о том, что нерегулярные мощные всплески гамма- и рентгеновского излучений вызваны звездотрясениями. В 1998 году внезапно очнулся от «дремоты» известный SGR, который 20 лет не подавал признаков активности и выплеснул почти столько же энергии, как и гамма-вспышка 5 марта 1979 года. Больше всего поразило исследователей при наблюдении за этим событием резкое замедление скорости вращения звезды, говорящее о ее разрушении. Для объяснения мощных гамма и рентгеновских вспышек была предложена модель магнетара — нейтронной звезды со сверхсильным магнитным полем. Если нейтронная звезда рождается, вращаясь очень быстро, то совместное влияние вращения и конвекции, которая играет важную роль в первые несколько секунд существования нейтронной звезды, может создать огромное магнитное поле в результате сложного процесса, известного как «активное динамо» (таким же способом создается поле внутри Земли и Солнца). Теоретики были поражены, обнаружив, что такое динамо, работая в горячей, новорожденной нейтронной звезде, может создать магнитное поле, в 10 000 раз более сильное, чем обычное поле пульсаров. Когда звезда охлаждается (секунд через 10 или 20), конвекция и действие динамо прекращаются, но этого времени вполне достаточно, чтобы успело возникнуть нужное поле.

Магнитное поле вращающегося электропроводящего шара бывает неустойчивым, и резкая перестройка его структуры может сопровождаться выбросом колоссальных количеств энергии (наглядный пример такой неустойчивости — периодическая переброска магнитных полюсов Земли). Аналогичные вещи случаются и на Солнце, во взрывных событиях, названных «солнечными вспышками». В магнетаре доступная магнитная энергия огромна, и этой энергии вполне достаточно для мощи таких гигантских вспышек, как 5 марта 1979 и 27 августа 1998 годов. Подобные события неизбежно вызывают глубокую ломку и изменения в структуре не только электрических токов в объеме нейтронной звезды, но и ее твердой коры.

Другим загадочным типом объектов, которые испускают мощное рентгеновское излучение во время периодических взрывов, являются так называемые аномальные рентгеновские пульсары — АХР. Они отличаются от обычных рентгеновских пульсаров тем, что излучают только в рентгеновском диапазоне. Ученые полагают, что SGR и АХР являются фазами жизни одного и того же класса объектов, а именно магнетаров, или нейтронных звезд, которые излучают мягкие гамма-кванты, черпая энергию из магнитного поля. И хотя магнетары на сегодня остаются, детищами теоретиков и нет достаточных данных, подтверждающих их существование, астрономы упорно ищут нужные доказательства.

Слайды и текст этой презентации

Слайд 1

Текст слайда:

НЕЙТРОННЫЕ ЗВЁЗДЫ

Слайд 2

Текст слайда:

Нейтронные звезды, которые часто называют «мертвыми», являются удивительнейшими объектами. Открытие в 1932 году новой элементарной частицы — нейтрона заставило астрофизиков задуматься над тем, какую роль он может играть в эволюции звезд. Нейтронные звезды рождаются очень горячими, но достаточно быстро охлаждаются.

Рис.1 Нейтронная звезда

Слайд 3

Слайд 4

Текст слайда:

ФИЗИКА ПУЛЬСАРА

Красный сигарообразный кокон позади пульсара — это та часть пространства, где испускаемые нейтронной звездой электроны и протоны излучают мягкие гамма-кванты. . Свое название пульсар B1957+20 получил по той простой причине, что его мощнейшее излучение сжигает соседа.

Рис. 2. Черная вдова

Пульсар — это огромный намагниченный волчок, крутящийся вокруг оси, не совпадающей с осью магнита.

Слайд 5

Текст слайда:

ВСЕСИЛЬНАЯ ГРАВИТАЦИЯ

От гиганта, во много раз превышавшего размерами и массой наше Солнце, остается плотный горячий объект размером около 20 км, с тонкой атмосферой (из водорода и более тяжелых ионов) и гравитационным полем, в 100 млрд. раз превышающим земное.

Яркая точка в верхней части рисунка — SGR-пульсар, а неправильный контур — положение объекта, вспыхнувшего 5 марта 1979 года.

Рис. 3.

Слайд 6

Текст слайда:

ПРОИСХОЖДЕНИЕ НЕЙТРОННОЙ ЗВЕЗДЫ

Если звезда маленькая, типа нашего Солнца, то происходит вспышка и образуется белый карлик. Если масса светила более чем в 10 раз превышает Солнечную массу, то такое обрушение приводит к вспышке сверхновой звезды и образуется обычная нейтронная звезда. Если же сверхновая вспыхивает на месте совсем большой звезды, с массой 20—40 Солнечных, и образуется нейтронная звезда с массой большей трех Солнц, то процесс гравитационного сжатия приобретает необратимый характер и образуется черная дыра.

Слайд 7

Текст слайда:

МАГНЕТАРЫ

Для объяснения мощных гамма и рентгеновских вспышек была предложена модель магнетара — нейтронной звезды со сверхсильным магнитным полем.

Рис. 5.

Ученые полагают, что SGR и AXP являются фазами жизни одного и того же класса объектов.

Рис. 4.

Слайд 8

Текст слайда:

Только новейшие исследования космической обсерватории «Чандра» позволили разгадать загадочное поведение этого объекта. Оказалось, что это не одна, а две нейтронные звезды.

Загадка 4U2127 разгадана

Рис. 6.

Слайд 9

Текст слайда:

Вывод

Всего на сегодняшний день астрономы обнаружили около 1 200 нейтронных звезд. Из них более 1 000 являются радио пульсарами, а остальные — просто рентгеновскими источниками.

Рождение на кончике пера

Открытие в 1932 году новой элементарной частицы нейтрона заставило астрофизиков задуматься над тем, какую роль он может играть в эволюции звезд. Два года спустя было высказано предположение о том, что взрывы сверхновых звезд связаны с превращением обычных звезд в нейтронные. Затем были выполнены расчеты структуры и параметров последних, и стало ясно, что если небольшие звезды (типа нашего Солнца) в конце своей эволюции превращаются в белых карликов, то более тяжелые становятся нейтронными. В августе 1967 года радиоастрономы при изучении мерцаний космических радиоисточников обнаружили странные сигналы фиксировались очень короткие, длительностью около 50 миллисекунд, импульсы радиоизлучения, повторявшиеся через строго определенный интервал времени (порядка одной секунды). Это было совершенно не похоже на обычную хаотическую картину случайных нерегулярных колебаний радиоизлучения. После тщательной проверки всей аппаратуры пришла уверенность, что импульсы имеют внеземное происхождение. Астрономов трудно удивить объектами, излучающими с переменной интенсивностью, но в данном случае период был столь мал, а сигналы столь регулярны, что ученые всерьез предположили, что они могут быть весточками от внеземных цивилизаций.

А потому первый пульсар получил название LGM-1 (от английского Little Green Men «Маленькие Зеленые Человечки»), хотя попытки найти какой-либо смысл в принимаемых импульсах окончились безрезультатно. Вскоре были обнаружены еще 3 пульсирующих радиоисточника. Их период опять оказался много меньше характерных времен колебания и вращения всех известных астрономических объектов. Из-за импульсного характера излучения новые объекты стали называть пульсарами. Это открытие буквально всколыхнуло астрономию, и из многих радиообсерваторий начали поступать сообщения об обнаружении пульсаров. После открытия пульсара в Крабовидной Туманности, возникшей из-за взрыва сверхновой в 1054 году (эта звезда была видна днем, о чем упоминают в своих летописях китайцы, арабы и североамериканцы), стало ясно, что пульсары каким-то образом связаны с вспышками сверхновых звезд.

Скорее всего, сигналы шли от объекта, оставшегося после взрыва. Прошло немало времени, прежде чем астрофизики поняли, что пульсары это и есть быстро вращающиеся нейтронные звезды, которые они так долго искали.

Крабовидная туманность Вспышка этой сверхновой звезды (фото вверху), сверкавшей на земном небосклоне ярче Венеры и видимой даже днем, произошла в 1054 году по земным часам. Почти 1 000 лет это очень маленький срок по космическим меркам, и тем не менее за это время из остатков взорвавшейся звезды успела образоваться красивейшая Крабовидная туманность. Данное изображение является композицией двух картинок: одна из них получена космическим оптическим телескопом «Хаббл» (оттенки красного), другая рентгеновским телескопом «Чандра» (голубой). Хорошо видно, что высокоэнергичные электроны, излучающие в рентгеновском диапазоне, очень быстро теряют свою энергию, поэтому голубые цвета превалируют только в центральной части туманности. Совмещение двух изображений помогает более точно понять механизм работы этого удивительнейшего космического генератора, излучающего электромагнитные колебания широчайшего частотного диапазона от гамма-квантов до радиоволн. Хотя большинство нейтронных звезд было обнаружено по радиоизлучению, все же основное количество энергии они испускают в гамма- и рентгеновском диапазонах. Нейтронные звезды рождаются очень горячими, но достаточно быстро охлаждаются, и уже в тысячелетнем возрасте имеют температуру поверхности около 1 000 000 К. Поэтому только молодые нейтронные звезды сияют в рентгеновском диапазоне за счет чисто теплового излучения.

Всесильная гравитация

Согласно современной теории эволюции массивные звезды заканчивают свою жизнь колоссальным взрывом, превращающим большую их часть в расширяющуюся газовую туманность. В итоге от гиганта, во много раз превышавшего размерами и массой наше Солнце, остается плотный горячий объект размером около 20 км, с тонкой атмосферой (из водорода и более тяжелых ионов) и гравитационным полем, в 100 млрд. раз превышающим земное. Его и назвали нейтронной звездой, полагая, что он состоит главным образом из нейтронов. Вещество нейтронной звезды — самая плотная форма материи (чайная ложка такого суперядра весит около миллиарда тонн).

Очень короткий период излучаемых пульсарами сигналов был первым и самым главным аргументом в пользу того, что это и есть нейтронные звезды, обладающие огромным магнитным полем и вращающиеся с бешеной скоростью. Только плотные и компактные объекты (размером всего несколько десятков километров) с мощным гравитационным полем могут выдерживать такую скорость вращения, не разлетаясь на куски из-за центробежных сил инерции.

Нейтронная звезда состоит из нейтронной жидкости с примесью протонов и электронов. «Ядерная жидкость», очень напоминающая вещество из атомных ядер, в 1014 раз плотнее обычной воды. Это огромное различие вполне объяснимо — ведь атомы состоят в основном из пустого пространства, в котором вокруг крошечного, тяжелого ядра порхают легкие электроны. Ядро содержит почти всю массу, так как протоны и нейтроны в 2 000 раз тяжелее электронов. Экстремальные силы, возникающие при формировании нейтронной звезды, так сжимают атомы, что электроны, вдавленные в ядра, объединяются с протонами, образуя нейтроны. Таким образом рождается звезда, почти полностью состоящая из нейтронов. Сверхплотная ядерная жидкость, если ее принести на Землю, взорвалась бы, подобно ядерной бомбе, но в нейтронной звезде она устойчива благодаря огромному гравитационному давлению. Однако во внешних слоях нейтронной звезды (как, впрочем, и всех звезд) давление и температура падают, образуя твердую корку толщиной около километра. Как полагают, состоит она в основном из ядер железа