Физические величины и единицы их измерения

Содержание

ДРУГОЕ

Сколько в литре килограммов?

Иногда для решения какой-нибудь практической задачи домохозяйкам приходится искать ответ на вопрос: сколько в литре…

Довольно часто в жизни случаются ситуации, когда необходимо для какого-то материала рассчитать объем в метрах…

Как перевести литры в тонны?

Довольно часто, для того чтобы было проще ориентироваться в правильном учете различных жидкостей, вам нужно постоянно…

Что такое объем?

Объем — одна из характеристик геометрического тела. Именно в этом значении мы используем данное слово, когда говорим о…

В чем измеряется объем?

Под объемом подразумевается количественная оценка пространства, которое занимает вещество или тело. Вместимость сосуда…

Как изменяется давление идеального газа?

Как изменяется давление идеального газа?Идеальный газ представляет собой физическую модель газа. Эта модель практически…

В химии и физике часто попадаются задачи, в которых необходимо вычислить массу вещества, зная его объём. Как найти…

Как найти плотность?

Плотностью принято называть такую физическую величину, которая определяет отношение массы предмета, вещества или…

В школе на уроках геометрии ученики решают множество задач на нахождение площади и объема различных фигур. Если вам…

Как найти объем конуса?

В геометрии под конусом подразумевается фигура, которая образуется объединением лучей, выходящих из общей точки,…

Как найти объем куба?

Куб представляет собой простую стереометрическую (объемную) геометрическую фигуру. Для решения многих физических,…

Это изучали еще в начальных классах. И вот, спустя годы, вопрос: а как найти объем цилиндра? Проблема ставит в…

Как найти объем шара?

Шаром называется одно из простейших геометрических тел, в котором все точки его поверхности находятся на одинаковом…

Для начала вспомним, что такое пирамида. Пирамида — это многогранник, все боковые грани которого являются…

Измерять высоту цилиндра учат в школе на уроках геометрии. Но и за стенами школы эти знания могут пригодиться на…

Как найти высоту параллелепипеда?

Для того чтобы выяснить, как найти высоту параллелепипеда, сначала разберемся с понятиями.Определения:Параллелепипедом…

Как найти объем газа?

Прежде чем решать задачи, следует занть формулы и правила того, как найти объем газа. Следует вспомнить закон Авогадро.…

На уроках химии в школе учат решать различные задачи, популярными среди которых являются задачи на вычисление…

Как найти концентрацию?

Знакомая нам с детства такая величина как концентрация определяет количество находящегося в любом растворе вещества. И…

В химии никак не обойтись без массы веществ. Ведь это один из важнейших параметров химического элемента. О том, как…

Как найти объем вещества?

Химия и физика всегда подразумевают вычисление различных величин, в том числе и объём вещества. Объем вещества можно…

Зачем и кому нужно знать эти формулы

В любой стране есть стандарты, по которым производится продукция

Неважно, какая это отрасль – пищевая, химическая или другая. Стандарты также могут быть мировыми

Так вот для того чтобы выпускаемая на заводах продукция соответствовала этим стандартам и нужны знания о плотности, массе и объёме.

Но зачем кому-то придерживаться чьих-то правил? Для начала, эти правила взяты не с потолка. К этому пришли разные бизнесмены со всего мира и нашли оптимальное решение, удовлетворяющее как производителей, так и конечных пользователей продукта. Если бы все выпускали продукцию как им вздумается, то людям было бы очень тяжело выбрать производителя. Ведь даже сейчас, со всеми стандартами и ГОСТами выбор просто огромный.

Кроме того, игнорируя физику и математику, можно выработать продукцию себе же в убыток или сделать продукцию, которая не оправдает ожиданий и будет выглядеть не так, как задумывал производитель. Есть и другие ситуации, где необходимы знания подобного рода – при подсчёте планируемого объёма, который займёт продукция на складе; вес продукции, которую нужно будет перевести и т.д.

Эти знания могут потребоваться инженерам, технологам, конструкторам и прочим профессиям, чья деятельность связана с физическими материалами. Конечно, для простого обывателя эти знания могут и не пригодиться. Однако, стоит вспомнить про случай с Архимедом и тогда вы поймёте, что знания – защита от обмана и настоящая сила!

14 Способы перевода кубометров в другие кубические единицы

Рассчитывая объемности, необходимо придерживаться одинаковых единиц замеров. Если данные представлены другими единицами, а конечный результат должен быть получен в кубах, то достаточно будет правильно сделать преобразование.

Если V измерен в мм3, см3, дм3, л, то в м3 переводим соответственно:

  • 1 м3 = 1 мм3 х х 0, 000000001 = 1 мм3 х 10-9;
  • 1 м3 = 1 см3 х 0, 000001 = 1 см3 х 10-6;
  • 1 м3 = 1 дм3 х 0,001 = 1 дм3 х 10-3. Такой же перевод применяют и для литров, поскольку в 1 л содержится 1 дм3.

Чтобы найти кубы вещества, зная его массу, нужно по таблице отыскать его плотность или определить вручную. Разделив заданную массу М (кг) на показатель плотности Р (кг/ м3), получим V материала (м3).

Знания для определения объемов необходимы и специалистам, и обычным людям в повседневной жизни.

Источники

  • https://ru.onlinemschool.com/math/formula/volume/
  • https://exceltut.ru/formuly-obema-geometricheskih-figur-najti-vse-obemy/
  • https://zametkiddach.ru/obem-bochki-kalkulyator
  • https://iobogrev.ru/rasschitat-obem-baka-v-litrah-po-razmeram
  • https://StroySoveti.ru/kanalizaciya/kak-rasschitat-obem-emkosti-razlichnoy-formyi.html
  • https://VseProTruby.ru/vodoprovodnye/raschet-obema-vody-v-trube.html
  • http://LediZnaet.ru/deti/mir-znanij/kak-poschitat-obyom.html

Как действует сила Архимеда

Поскольку сила Архимеда, действующая на тело, зависит от объёма его погружённой части и плотности среды, в которой оно находится, можно рассчитать, как поведёт себя то или иное тело в определённой жидкости или газе.

Если плотность тела меньше плотности жидкости или газа — оно будет плавать на поверхности.

Если плотности тела и жидкости или газа равны — тело будет находиться в безразличном равновесии в толще жидкости или газа.

Если плотность тела больше, чем плотность жидкости или газа, — оно уйдёт на дно. 

Сила Архимеда в жидкости: почему корабли не тонут

Корпус корабля заполнен воздухом, поэтому общая плотность судна оказывается меньше плотности воды, и сила Архимеда выталкивает его на поверхность. Но если корабль получит пробоину и пространство внутри заполнится водой, то общая плотность судна увеличится, и оно утонет. 

В подводных лодках существуют специальные резервуары, заполняемые водой или сжатым воздухом в зависимости от того, нужно ли уйти на глубину или подняться ближе к поверхности. Тот же самый принцип используют рыбы, наполняя воздухом специальный орган — плавательный пузырь. 

На тело, плотно прилегающее ко дну, выталкивающая сила не действует. Это учитывают при подъёме затонувших кораблей. Сначала судно слегка приподнимают, позволяя воде проникнуть под него. Тогда давление воды начинает действовать на корабль снизу. 

Но чтобы поднять корабль на поверхность, необходимо уменьшить его плотность. Разумеется, воздух в получившем пробоину корпусе не удержится. Поэтому его заполняют каким-нибудь лёгким веществом, например, шариками пенополистирола. 

Примечательно, что эта идея впервые пришла в голову не учёным, а авторам диснеевского комикса, в котором Дональд Дак таким образом поднимает со дна яхту Скруджа Макдака. Датский инженер Карл Кройер (Karl Krøyer), впервые применивший метод на практике, по собственному признанию вдохновлялся «Утиными историями».

‍Дональд Дак поднимает со дна яхту при помощи шариков для пинг-понга. Walt Disney Corporation, 1949‍

Сила Архимеда в газах: почему летают дирижабли

В воздухе архимедова сила действует так же, как в жидкости. Но поскольку плотность воздуха обычно намного меньше, чем плотность окружённых им предметов, выталкивающая сила оказывается ничтожно мала.

Впрочем, есть исключения. Воздушный шарик, наполненный гелием, стремится вверх именно потому, что плотность гелия ниже, чем плотность воздуха. А если наполнить шар обычным воздухом — он упадёт на землю. Плотность воздуха в нём будет такая же, как у воздуха снаружи, но более высокая плотность резины обеспечит падение шарика.

Этот принцип используется в аэростатах — воздушные шары и дирижабли наполняют гелием или горячим воздухом (чем горячее воздух, тем ниже его плотность), чтобы подняться, и снижают концентрацию гелия (или температуру воздуха), чтобы спуститься. На них действует та же выталкивающая сила, что и на подводные лодки. Именно поэтому перемещения на аэростатах называют воздухоплаванием.

Учите физику вместе с домашней онлайн-школой «Фоксфорда»! По промокоду PHYSICS72021 вы получите бесплатный доступ к курсу физики 7 класса, в котором изучается архимедова сила. 

Вторая формула

Наука химия, имеет пример (модель) идеального газа: на одну моль с объемом (этот молярный объем всегда постоянен). Формула выглядит так: V = 22,4 моль на литр. Представленный газ всегда имеет этот объем при давлении и температуре (они постоянны). Если рассматривать этот вопрос со стороны науки физики, то он (объем) может меняться. Вот подходящие формулы: V м — молярный объем равен Vв — объем порции газа деленное на n в — количество вещества. (Vм = Vв/nв). А само количества вещества вычисляется благодаря формуле деления массы нужного вещества на молярную массу (nв = mв/Mв). Из этого следует что: Vв = Vм*mв/Mв.

Объем пирамиды

Для начала рассмотрим треугольную пирамиду. Вершину пирамиды примем за начало координат точку О, а ось Ох проведем перпендикулярно основанию, причем ось будет направлена от вершины пирамиды к основанию.

Пусть ось Ох пересечет основание АВС в точке М. Тогда ОМ – это высота, чью длину мы обозначим как h.

Далее построим сечение А1В1С1, параллельное АВС. Это сечение пересечется с ОМ в точке ОМ1. Тогда ОМ1 – это координата х, характеризующая расположение сечения А1В1С1.

Осталось составить выражение для площади ∆А1В1С1. Так как АВ||A1B1, то ∠АВО и ∠А1В1О одинаковы как соответственные углы. Тогда у ∆АВО и ∆А1В1О есть два равных угла (ведь ∠АОВ у них общий), а потому эти треугольники подобны по первому признаку подобия. Это означает, что

Надо как-то найти значение коэффициента k, который, очевидно, как-то зависит от переменной х. Рассмотрим теперь ∆ОМВ и ∆ОМ1В1. Они прямоугольные, ведь ОМ перпендикулярен плоскостям этих треугольников. Также у них есть общий угол ∠ОВМ. Значит, они подобны, и поэтому

Итак, если пирамида имеет высоту h и площадь основания S, то объем пирамиды равен:

Выведенная нами формула справедлива для треугольной пирамиды. Однако если в основании пирамиды лежит произвольный многоугольник, то, разбив этот многоугольник на треугольники, мы разобьем и пирамиду на несколько треугольных пирамид. У них будет общая высота h и площади оснований S1, S2, S3…, которые в сумме составляют площадь многоугольника S.

Объем треугольных пирамид рассчитывается по выведенной нами формуле:

Задание. В основании пирамиды высотой 15 лежит квадрат со стороной 4. Вычислите ее объем.

Решение. Сначала находим площадь основания. Для этого надо сторону квадрата умножить саму на себя:

Задание. В кубе АВСDA1В1С1D1 отмечены точки Е и F – середины ребер ВС и CD соответственно. Во сколько раз объем пирамиды С1EFC меньше объема куба?

Решение. Обозначим длину ребра куба буквой а. Тогда его объем рассчитывается так:

Задание. Отрезок MN перпендикулярен плоскости пятиугольника АВСDE. Точка K, принадлежащая этой плоскости, делит отрезок MN в отношении 2:1. Во сколько раз объем пирамиды MABCDE больше объема пирамиды NABCDE?

Решение. Запишем формулы для объемов этих пирамид. При этом учтем, что MK – высота для MABCDE, а NK – это высота для NABCDE.

Далее рассмотрим такую фигуру, как усеченная пирамида. Ясно, что ее объем можно вычислить, если из объема исходной пирамиды вычесть объем отсеченной верхушки.

Снова рассмотрим пирамиду ОАВС, через которую проведено сечение А1В1С1, параллельное основанию.

Обозначим площадь нижнего основания пирамиды как S2, а площадь верхнего основания – как S1. Далее высоту усеченной пирамиды (отрезок ММ1) обозначим как h. Мы уже выяснили ранее, что основания АВС и А1В1С1 – это подобные треугольники, причем коэффициент их подобия k равен отношению высот ОМ и ОМ1. Тогда можно записать:

Далее используем основное свойство пропорции:

Далее числитель дроби мы раскладываем на множители, используя формулу разности кубов:

Задание. Основаниями усеченной пирамиды являются квадраты со сторонами 9 см и 5 см, а высота пирамиды составляет 6 см. Найдите ее объем.

Сначала вычислим площади оснований:

Проект: «Масса, объём и плотность»

Эксперимент посвящен взаимосвязи массы объекта, его объема и плотности. Опытным путем мы сможем узнать о гравитационном ускорении, плотности воды, почему некоторые вещи не тонут, а плавают на поверхности и из-за чего вес космонавтов на Луне меньше, чем на Земле.

Вес и плотность – схожие понятия, но их нельзя путать, поскольку напрямую они друг от друга не зависят. Вес может сколько угодно меняться, а плотность при этом остается неизменной. Плотность – это количество материи, которое помещается в объем объектов. Как рассчитать плотность, зная вес и объем?

Используя общеизвестные формулы можно легко подсчитать объем геометрических фигур. Например, объем шара рассчитывается по формуле 4/3 π3, а объем куба как произведение длины, ширины и высоты. Но, у реальных предметов совершенно разные формы. Более того, объекты могут быть и вовсе бесформенными. И подсчитать их параметры по стандартным формулам не получится. Как тогда найти объем вещества? На помощь приходит вода.

Что нам понадобится:

  • вода;
  • весы для измерения в граммах;
  • цилиндрический сосуд с мерной шкалой, объемом 0,5-1 литр (с широким горлышком);
  • объекты разного веса: апельсин, теннисный мячик, часть металлической трубки, металлические деньги, завернутые в бумагу, т.д.

Ход эксперимента:

  1. Взвешиваем каждый предмет по отдельности, записываем получившийся результат в граммах.
  2. Мерный сосуд заполняем водой наполовину. Объем налитой воды записываем.
  3. Полностью опускаем выбранный предмет в воду.
  4. Теперь измеряем совокупный объем воды и опущенного в нее предмета.
  5. Пункты 3 и 4 повторяем для всех объектов.
  6. С помощью полученных значений объема вычисляем массу и плотность.
Объект Вес (г) Начальный объём (мл) Конечный объём (мл) Объём (мл) Масса (г) Плотность (г/мл)
A
B
C
D
E
F
G

Вывод:

С использованием воды и емкости нам удалось узнать не только объем предметов, но и их плотность. Как вы думаете, для чего нам нужна плотность? На что она влияет? Как с ее помощью рассчитать массу?

Опытным путем мы смогли убедиться, что плотность влияет на массу объектов, а масса — на гравитационное ускорение. Получается, что от величины плотности зависит ускорение свободного падения. При этом величина объема будет оставаться неизменной.

В то же время, поскольку ускорение свободного падения зависит от массы тела, то для Луны и Земли оно разное. Масса Луны в шесть раз меньше массы Земли, поэтому из-за слабого гравитационного притяжения космонавты на Луне весят меньше, чем на Земле.

Плавучесть предметов также зависит не от объема, а от плотности. Если она меньше плотности воды, то предмет будет плавать на поверхности, в противном случае – утонет. Это закон Архимеда. Подробнее о нем написано в следующем проекте.

Основные понятия

Молекулярная физика иногда рассматривается как теоретическое дополнение термодинамики. Возникшая намного раньше, термодинамика занималась изучением перехода тепла в работу, преследуя чисто практические цели. Она не производила теоретического обоснования, описывая лишь результаты опытов. Основные понятия молекулярной физики возникли позже, в XIX веке.

Она изучает взаимодействие тел на молекулярном уровне, руководствуясь статистическим методом, который определяет закономерности в хаотических движениях минимальных частиц – молекул. Молекулярная физика и термодинамика дополняют друг друга, рассматривая процессы с разных точек зрения. При этом термодинамика не касается атомарных процессов, имея дело только с макроскопическими телами, а молекулярная физика, напротив, рассматривает любой процесс именно с точки зрения взаимодействия отдельных структурных единиц.

Все понятия и процессы имеют собственные обозначения и описываются специальными формулами, которые наиболее наглядно представляют взаимодействия и зависимости тех или иных параметров друг от друга. Процессы и явления пересекаются в своих проявлениях, разные формулы могут содержать одни и те же величины и быть выражены разными способами.

Формула для гравитации

Математическое описание явления гравитации стало возможным благодаря многочисленным наблюдениям за движением космических тел. Результаты всех этих наблюдений в XVII веке обобщил Исаак Ньютон в рамках закона всемирного тяготения. Согласно этому закону, два тела, которые имеют массы m1 и m2, друг к другу притягиваются с такой силой F:

F = G * m1 * m2 / r2

Где r — расстояние между телами, G — некоторая постоянная.

Если в данное выражение подставить значение массы нашей планеты и ее радиус, тогда мы получим следующую формулу массы в физике:

m = F / g

Здесь F — сила тяжести, g — ускорение, с которым тела падают на землю вблизи ее поверхности.

Как известно, наличие силы тяжести обуславливает то, что все тела имеют вес. Многие путают вес и массу, полагая, что это одна и та же величина. Обе величины действительно связаны через коэффициент g, однако вес — величина изменчивая (она зависит от ускорения, с которым движется система). Кроме того, вес измеряется в ньютонах, а масса в килограммах.

Весы, которыми человек пользуется в быту (механические, электронные), показывают массу тела, однако измеряют его вес. Перевод между этими величинами является лишь вопросом калибровки прибора.

11 Как определить объём сферического изделия

Сферические изделия встречаются в нашей жизни почти каждый день. Это может быть элемент подшипника, футбольный мяч или пишущая часть шариковой ручки. В некоторых случаях нам необходимо узнать, как рассчитать кубатуру сферы для определения количества жидкости в ней.

Как утверждают эксперты, для вычисления объёма этой фигуры используется формула V=4/3ԉr3, где:

  • V – подсчитываемый объём детали;
  • R- радиус сферы;
  • ԉ – постоянная величина, которая равняется 3,14.

Для проведения необходимых вычислений нам нужно взять рулетку, зафиксировать начало измерительной шкалы и провести замер, причём лента рулетки должна проходить по экваторe шара. После этого узнают диаметр детали, поделив размер на число ԉ.

А теперь ознакомимся с конкретным примером вычисления для сферы, если её длина по окружности равняется 2,5 метрам. Сначала определим диаметр 2,5/3,14=0,8 метра. Теперь подставляем это значение в формулу:

Проект: «Объём и вытеснение воды»

В ходе эксперимента установим, как объем вытесненной воды зависит от объема погруженной вещи.

Впервые соответствие объема воды, вытесненной объектом, и объема этого объекта установил Архимед, когда опустился в ванную и крикнул «Эврика!». В проекте мы наглядно покажем объем вымещения воды, а затем попробуем спрогнозировать результат.

Что нам понадобится:

  • три стакана, два из которых полностью одинаковые;
  • вода;
  • карандаш;
  • монеты;
  • камни, по размеру крупнее монет;
  • другие предметы для погружения в стакан;
  • емкость для контроля объема вылитой воды.

Ход эксперимента:

  1. Возьмем одинаковые стаканы, которые не полностью, но одинаково наполним водой.
  2. Отметим уровень воды в обоих стаканах.
  3. Поочередно бросим сначала монету в один стакан, а потом камень во второй стакан. Что стало с уровнем воды?
  4. Бросим по 10 монет и камней в каждый стакан. Что произошло с уровнем воды?
  5. Бросаем монеты и камни до тех пор, пока вода не выливается через край стаканов. Сколько поместилось монет, а сколько камней, пока вода не стала вытекать?
  6. Возьмем третий стакан, также наполним его водой.
  7. Попробуем угадать, сколько монет или камней поместиться в стакан, прежде чем вода начнет вытекать? Проверяем на практике.
  8. Проделаем такой же опыт со стаканами других параметров, а также иными объектами.
  9. Предположим, сколько монет или камней нужно будет бросить в стакан, чтобы уровень воды стал таким же, как у стакана с другими объектами. Сравним их объем.

Вывод:

Погружая в воду различные объекты, по объему вытесненной жидкости мы смогли установить их объем, тем самым проверив закон Архимеда на практике.

Архимед установил, что объект, опущенный в воду, вытесняет такой объём жидкости, который равен объёму самого объекта. Соответственно, если объектов несколько (10 монет или камней), то объем вытекшей жидкости будет равен совокупному объему всех помещенных в воду объектов.

Примеры решения задач

Прежде чем приступить к примерам, следует понимать, что если данные даны в килограммах и кубических сантиметрах, то нужно либо сантиметры перевести в метры, либо килограммы перевести в граммы. По такому же принципу надо переводить и остальные данные – миллиметры, тонны и так далее.

Задача 1. Найти массу тела, состоящего из вещества, плотность которого равна 2350 кг/м³ и имеет объём 20 м³. Применяем стандартную формулу и с лёгкостью находим значение. m = p*V= 2 350 * 20 = 47 000 кг.

Задача 2. Уже известно, что плотность чистого золота без примесей равна 19,32 г/см³. Найти массу драгоценной цепочки из золота, если объём составляет 3,7 см³. Воспользуемся формулой и подставим значения. p = m / V = 19,32/3,7 = 5,22162162 гр.

Задача 3. На склад поставили металл с плотностью 9250 кг/м³. Масса составляет 1,420 тонн. Нужно найти занимаемый металлом объём. Тут нужно сначала перевести либо тонны в килограммы, либо метры в километры. Проще будет воспользоваться первым методом. V = m / p = 1420/9250 = 0.153513514 м³.

Плотность тела — зависимость массы и объема

Например, железный куб с ребром 10 см имеет массу 7,8 кг, алюминиевый куб тех же размеров имеет массу 2,7 кг, а масса такого же куба изо льда 0,9 кг. Величина, характеризующая массу, приходящуюся на единичный объём данного вещества, называется плотностью. Плотность равна частному от массы тела и его объёма, т.е.

ρ = m/V, где ρ (читается «ро») плотность тела, m — его масса, V объём.

В Международной системе единиц СИ плотность измеряется в килограммах на кубический метр (кг/м3); также часто используются внесистемные единицы, например, грамм на кубический сантиметр (г/см3). Очевидно, 1 кг/м3 = 0,001 г/см3. Заметим, что при нагревании веществ их плотность уменьшается или (реже) увеличивается, но это изменение так незначительно, что при расчётах им пренебрегают.

Сделаем оговорку, что плотность газов непостоянна; когда говорится о плотности какого-нибудь газа, обычно имеется ввиду его плотность при 0 градусов по Цельсию и нормальном атмосферном давлении (760 миллиметров ртутного столба).

Измерить – значит, сравнить

На помощь человеку приходят числа, используя которые можно было сравнить предметы по величине. Так в одном известном мультфильме длину удава измеряли в «попугаях», сравнивая величину удава с длиной попугая.

Из мультфильма «38 попугаев». 

Длина удава 38 «попугаев». Понятно, что удав в 38 раз длиннее попугая. Но попугаи бывают разными. Если взять другого попугая, тот же удав будет, например, 45 «попугаев». Что делать?

Нужно найти тело, принимаемое за единицу измерения, с которой сравниваются другие тела.

В практической деятельности человеку приходится часто измерять длину, массу и время. В разных странах вводились разные единицы измерения этих величин. Существовали такие единицы, как «лошадиная сила», локоть, бочка. Но ведь и локоть, и бочка могут быть разными, поэтому о точности выполнения работы говорилось приблизительно.

(Источник)

Сравнивать нужно только однородные физические величины. Длину тела нужно сравнивать с длиной другого тела, а массу тела – только с массой другого тела, принятого за единицу измерения. Так массу удава из мультфильма можно было сравнить с массой обезьянки. Удав имеет массу 195 «обезьянок». Что бы это значило?

Выход был найден, когда ввели систему единиц СИ. Чтобы измерить любую величину, нужно сравнить ее с однородной величиной, принятой за единицу. Как же выбирают эти единицы?

Наиболее распространено измерение длины, размеров пройденного пути, расстояния. Все эти величины измеряются в метрах. Один метр получили следующим образом. Взяли одну сорока миллионную часть меридиана, который проходит через столицу Франции – Париж. Длину этой части и приняли за 1 метр. На стержне, изготовленном из иридия и платины, нанесли два деления, расстояние между которыми равно одному метру. Такой сплав меньше всего подвержен температурному влиянию, которое может изменить длину тела. Это стержень и есть эталон длины, с которым сравнивают единицу длины во многих странах мира. Метровые линейки – это многочисленные копии эталона, которыми как раз и можно пользоваться.

Эталон длины

(Источник)

Первый эталон метра был изготовлен из латуни в 1795 г. С 1960 г. используется изготовленный с помощью электронных технологий эталон из сплава иридия и платины.  

Существует и эталон массы, равный одному килограмму. Он также изготовлен из сплава иридия и платины.

(Источник)

Эталоны длины и массы хранятся в г. Севр, вблизи Парижа, где располагается Международная палата мер и весов. В 1960 году метр начали сравнивать с величинами, относящимися к разделу «Световые явления». Подробности о свете изучаются в старших классах.

Со светом связана и единица времени – 1 секунда. А до 1960 года (год введения СИ) за основу подсчета времени брали время оборота Земли вокруг Солнца – 1 год, который по календарю состоит из 12 месяцев. Месяцы делятся на сутки – время полного оборота Земли вокруг своей оси, сутки — 24 часа, в каждом из которых 60 минут. А одна шестидесятая часть минуты и есть одна секунда.

Время «хранят» при помощи очень точных часов – устройств, предназначенных для измерения времени. Действие любых часов основано на повторяющихся процессах – колебаниях. Чем меньше период (время одного полного колебания), тем часы более точные.

     При изучении быстро протекающих процессов требуется измерять миллиардные и еще более мелкие доли секунды. Для этого служат атомные часы.

(Источник)

Ученик седьмого класса, конечно же, умеет измерять длину и время, массу продуктов определяют продавцы с помощью весов.

По мере изучения физики будет идти знакомство с различными физическими величинами, способами и приборами их измерения. А сейчас надо знать:

  • чтобы измерить физическую величину, ее надо сравнить с однородной величиной, принятой за единицу;
  • за основу физических величин берутся эталонные значения, то есть образец сравнения.
  • для всех величин существуют свои способы, устройства и единицы измерения.

Объем цилиндрической полости

Объем полости в виде цилиндра равен объему цилиндра, который извлечен из данной полости для ее образования. То есть для вычисления цилиндрической полости можно воспользоваться формулами и калькулятором для расчета простого правильного цилиндра в зависимости от известных исходных данных.

На картинке продемонстрирована цилиндрическая полость, образованная в теле путем извлечения из него цилиндра. Объем извлеченного цилиндра и объем образованной полости равны.

Нужно отметить один важный момент. Несмотря на равенство объемов извлеченного цилиндра и образованной полости, площади поверхностей данных объектов будут отличаться, так как у образованной цилиндрической полости отсутствует верхняя поверхность. То есть суммарная площадь поверхности образованной цилиндрической полости будет меньше суммарной площади извлеченного цилиндра на одну площадь основания цилиндра.

Теория

Цилиндр может быть правильным или наклонным

Правильный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра равен 90 градусов.

Неправильный или наклонный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра отличается от 90 градусов.

Рассмотрим правильный цилиндр.

Цилиндр – это тело, образованное вращением прямоугольника вокруг одной из его сторон. Тело цилиндра ограничено двумя кругами, называемыми основанием цилиндра и боковой цилиндрической поверхностью, которая в развертке представляет собой прямоугольник

Цилиндр можно так же описать как тело, состоящее из двух равных кругов, не лежащих в одной плоскости и параллельных между собой, и отрезков, соединяющих все точки одной окружности, с соответствующими точками другой окружности. Данные отрезки называются образующими цилиндра.

Радиус основания цилиндра, является радиусом цилиндра.

Ось цилиндра – это прямая, соединяющая центра оснований цилиндра.

Высота цилиндра – это перпендикуляр, опущенный от одного основания цилиндра к другому.