Суть. солнечный загар, старение кожи, рак, родинки. борис цацулин

Распределение радиации «на границе атмосферы»

Для климатологии представляет существенный интерес вопрос о распределении притока и отдачи радиации по Земному шару. Рассмотрим сначала распределение солнечной радиации на горизонтальную поверхность «на границе атмосферы». Можно было бы также сказать: «в отсутствии атмосферы». Этим мы допускаем, что нет ни поглощения, ни рассеяния радиации, ни отражения ее облаками. Распределение солнечной радиации на границе атмосферы является простейшим. Оно действительно существует на высоте нескольких десятков километров. Указанное распределение называют солярным климатом.
Известно, как меняется в течение года солнечная постоянная и, стало быть, количество радиации, приходящее к Земле. Если определять солнечную постоянную для фактического расстояния Земли от Солнца, то при среднем годовом значении 1,98 кал/см2 мин. она будет равна 2,05 кал/см2 мин. в январе и 1,91 кал/см2 мин. в июле.

Стало быть, северное полушарие за летний день получает на границе атмосферы несколько меньше радиации, чем южное полушарие за свой летний день.

Количество радиации, получаемое за сутки на границе атмосферы, зависит от времени года и широты места. Под каждой широтой время года определяет продолжительность притока радиации. Но под разными широтами продолжительность дневной части суток в одно и то же время разная.

На полюсе солнце летом не заходит вовсе, а зимой не восходит в течение 6 месяцев. Между полюсом и полярным кругом солнце летом не заходит, а зимой не восходит в течение периода от полугода до одних суток. На экваторе дневная часть суток всегда продолжается 12 часов. От полярного круга до экватора дневное время суток летом убывает и зимой возрастает.

Но приток солнечной радиации на горизонтальную поверхность зависит не только от продолжительности дня, а еще и от высоты солнца. Количество радиации, приходящее на границе атмосферы на единицу горизонтальной поверхности, пропорционально синусу высоты солнца. А высота солнца не только меняется в каждом месте в течение дня, но зависит и от времени года. Высота солнца на экваторе меняется в течение года от 90 до 66,5°, на тропиках — от 90 до 43°, на полярных кругах — от 47 до 0° и на полюсах от 23,5 до 0°.

Шарообразность Земли и наклон плоскости экватора к плоскости эклиптики создают сложное распределение притока радиации по широтам на границе атмосферы и его изменения в течение года.
Зимой приток радиации очень быстро убывает от экватора к полюсу, летом — гораздо медленнее. При этом максимум летом наблюдается на тропике, а от тропика к экватору приток радиации несколько убывает. Малая разница в притоке радиации между тропическими и полярными широтами летом объясняется тем, что хотя высоты солнца в полярных широтах летом ниже, чем в тропиках, но зато велика продолжительность дня. В день летнего солнцестояния полюс поэтому получал бы в отсутствии атмосферы больше радиации, чем экватор. Однако у земной поверхности в результате ослабления радиации атмосферой, отражения ее облачностью и т.д., летний приток радиации в полярных широтах существенно меньше, чем в более низких широтах.

На верхней границе атмосферы вне тропиков имеется в годовом ходе один максимум радиации, приходящийся на время летнего солнцестояния, и один минимум, приходящийся на время зимнего солнцестояния. Но между тропиками приток радиации имеет два максимума в году, приходящиеся на те сроки, когда солнце достигает наибольшей полуденной высоты. На экваторе это будет в дни равноденствий, в других внутритропических широтах — после весеннего и перед осенним равноденствием, отодвигаясь тем больше от сроков равноденствий, чем больше широта. Амплитуда годового хода на экваторе мала, внутри тропиков невелика; в умеренных и высоких широтах она значительно больше.

Таблицы [ править | править код ]

Средняя дневная сумма солнечной радиации, кВтч/м²
Лонгйир Мурманск Архангельск Якутск Санкт-Петербург Москва Новосибирск Берлин Улан-Удэ Лондон Хабаровск Ростов-на-Дону Сочи Находка Нью-Йорк Мадрид Асуан
1,67 2,19 2,29 2,96 2,60 2,72 2,91 2,74 3,47 2,73 3,69 3,45 4,00 3,99 3,83 4,57 6,34
Средняя дневная сумма солнечной радиации в декабре, кВтч/м²
Лонгйир Мурманск Архангельск Якутск Санкт-Петербург Москва Новосибирск Берлин Улан-Удэ Лондон Хабаровск Ростов-на-Дону Сочи Находка Нью-Йорк Мадрид Асуан
0,05 0,16 0,17 0,33 0,62 0,61 0,97 0,60 1,29 1,00 1,25 2,04 1,68 1,64 4,30
Средняя дневная сумма солнечной радиации в июне, кВтч/м²
Лонгйир Мурманск Архангельск Якутск Санкт-Петербург Москва Новосибирск Берлин Улан-Удэ Лондон Хабаровск Ростов-на-Дону Сочи Находка Нью-Йорк Мадрид Асуан
4,99 5,14 5,51 6,19 5,78 5,56 5,48 4,80 5,72 4,84 5,94 5,76 6,75 5,12 5,84 7,41 8,00

Где солнечное ионизирующее облучение сильнее?

Наибольшая мощность космических лучей фиксируется на полюсах, а меньше всего – на экваторе. Связано это с тем, что магнитное поле Земли отклоняет к полюсам заряженные частицы, падающие из космоса. Кроме этого, излучение усиливается с высотой – на высоте 10 километров над уровнем моря его показатель возрастает в 20-25 раз. Активному воздействию более высоких доз солнечной радиации подвергаются жители высокогорий, поскольку атмосфера в горах тоньше и легче простреливается идущими от солнца потоками гамма-квантов и элементарных частиц.

Важно. Серьезного воздействия радиационный уровень до 0,3 мЗв/ч не оказывает, но при дозе 1,2 мкЗ/ч рекомендуется покинуть район, а случае крайней необходимости находится на его территории не более полугода

При превышении показаний вдвое следует ограничить пребывание в этой местности до трех месяцев.

Если над уровнем моря годовая доза космического облучения составляет 0,3 мЗв/год, то при повышении высоты через каждые сто метров этот показатель увеличивается на 0,03 мЗв/год. После проведения небольших расчетов можно сделать вывод, что недельный отпуск в горах на высоте 2000 метров даст облучение 1мЗв/год и обеспечит почти половину общей годовой нормы (2,4 мЗв/год).

Получается, что жители гор получают годовую дозу радиации, в разы превышающую норму, и должны чаще болеть лейкозом и раком, чем люди, живущие на равнинах. На самом деле, это не так. Наоборот, в горных районах фиксируется более низкая смертность от этих заболеваний, а часть населения – долгожители. Это подтверждает тот факт, что длительное нахождение в местах высокой радиационной активности не оказывает негативного влияния на организм человека.

Атмосфера Солнца: фотосфера и хромосфера

Атмосфера — это газовая оболочка небесного тела, которая удерживается его гравитацией. Внешние слои звезд также называются атмосферой. Внешними считаются те слои, откуда хотя бы часть излучения может беспрепятственно, не поглощаясь более высокими слоями, уйти в окружающее пространство.

Атмосфера Солнца начинается на 200–300 км глубже видимого края солнечного диска. Эти самые глубокие слои атмосферы называют фотосферой. Поскольку их толщина составляет не более 1/3000 доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца. Плотность газов в фотосфере примерно такая же, как в земной стратосфере, и в сотни раз меньше, чем у поверхности Земли. Температура фотосферы уменьшается от 8000 К на глубине 300 км до 4000 К в самых верхних ее слоях. Температура среднего слоя, к излучению которого чувствителен глаз человека, около 6000 К.

Особую роль в солнечной атмосфере играет отрицательный ион водорода, который представляет собой протон с двумя электронами. В земной природе такой ион не встречается. Это необычное соединение возникает в тонком внешнем, наиболее холодном слое фотосферы при «налипании» на нейтральные атомы водорода отрицательно заряженных свободных электронов, которые поставляются легко ионизуемыми атомами кальция, натрия, магния, железа и других металлов. При возникновении отрицательные ионы водорода излучают большую часть видимого света. Этот же свет ионы хорошо поглощают, из-за чего непрозрачность атмосферы с глубиной быстро растет. Поэтому видимый край Солнца и кажется нам очень резким.

Фотосфера постепенно переходит в более разреженные слои солнечной атмосферы — хромосферу и корону. Хромосфера (греч. «сфера цвета») названа так за свою красновато-фиолетовую окраску. Она видна во время полных солнечных затмений как клочковатое яркое кольцо вокруг черного диска Луны, только что затмившего Солнце. Хромосфера весьма неоднородна и состоит в основном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы. Температура этих хромосферных струй в два-три раза выше, чем в фотосфере, а плотность — в сотни тысяч раз меньше. Общая протяженность хромосферы — 10–15 тыс. км.

Солнечное затмение — хорошая возможность наблюдать хромосферу

Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в нее из конвективной зоны. Вещество нагревается примерно так же, как это происходит в микроволновой печи. Скорости тепловых движений частиц возрастают, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится горячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоев солнечной атмосферы, которые расположены выше хромосферы.

Часто во время затмений или при помощи специальных приборов над поверхностью Солнца можно наблюдать причудливой формы «фонтаны», «облака», «воронки», «кусты», «арки» и прочие ярко светящиеся образования из хромосферного вещества. Они бывают неподвижными или медленно изменяющимися, окруженными плавными изогнутыми струями, которые втекают в хромосферу или вытекают из нее, поднимаясь на десятки и сотни тысяч километров. Это самые грандиозные образования солнечной атмосферы — протуберанцы. При наблюдении в красной спектральной линии, излучаемой атомами водорода, они кажутся на фоне солнечного диска темными, длинными и изогнутыми волокнами. Протуберанцы имеют примерно ту же плотность и температуру, что и хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними слоями солнечной атмосферы. Протуберанцы не падают в хромосферу потому, что их вещество поддерживается магнитными полями активных областей Солнца. Спектр протуберанцев, как и хромосферы, состоит из ярких линий, главным образом водорода, гелия и кальция. Линии излучения других химических элементов тоже присутствуют, но они намного слабее.

Иногда нечто похожее на взрывы происходит в очень небольших по размеру областях атмосферы Солнца. Это так называемые хромосферные вспышки. Они длятся обычно несколько десятков минут. Во время вспышек в спектральных линиях водорода, гелия, ионизованного кальция и некоторых других элементов свечение отдельного участка хромосферы внезапно увеличивается в десятки раз. Особенно сильно возрастает ультрафиолетовое и рентгеновское излучение: порой его мощность в несколько раз превышает общую мощность излучения Солнца в этой коротковолновой области спектра до вспышки.

Синтез витамина Д

При воздействии на эпидермис энергия солнечного излучения преобразуется в тепло или расходуется на фотохимические реакции, в результате которых в организме осуществляются различные биохимические процессы.

Поступление витамина Д происходит двумя путями:

  • эндогенным — за счет образования в коже под воздействием УФ-лучей В;
  • экзогенным — за счет поступления с пищей.

Эндогенный путь – это довольно сложный процесс реакций, протекающих без участия ферментов, но при обязательном участии УФ-облучения В-лучами. При достаточной и регулярной инсоляции количество витамина Д3, синтезируемого в коже во время фотохимических реакций, в полной мере обеспечивает все потребности организма.

Планеты Солнечной системы: названия, особенности, история возникновения

Начать рассказ детям о космосе стоит с понятия о Солнечной системе.

Все космические тела, в том числе планеты, вращаются вокруг Солнца. Интересно, что все космические тела следуют по определенной траектории, по своему пути.

Давайте узнаем, какие планеты существуют, и как они называются.

Меркурий

Из всех планет Меркурий самый маленький. Но быстро вращается вокруг Солнца. Так как планета располагается ближе всех к Солнцу, температура здесь очень высокая. Примечательно, что ночью на Меркурии колоссально низкая температура.

Венера

Поверхность этой планеты представлена раскаленной каменистой пустыней. Наблюдать за Венерой трудно, ведь она окутана плотными облаками.

Земля

Пока Земля является единственной планетой, на которой есть жизнь. Но ученые ведут постоянные исследования в этой области. Мы являемся жителями планеты Земля. Спутником планеты Земля является Луна.

Марс

Марс назван в честь римского бога войны. Иногда можно услышать, что Марс называют Красной планетой. Это из-за цвета его поверхности. Вся поверхность Марса покрыта вулканами, кратерами, долинами, пустынями. На Марсе самые высокие горы, а также самые глубокие каньоны во всей Солнечной системе. Ученые предполагали, что на Марсе некогда была жизнь, так как на поверхности планеты находятся ледниковые шапки, когда-то они были водой. У Марса два спутника.

Юпитер

Планета-гигант, которая превосходит Землю массой в 300 раз. Поверхность Юпитера является газовой, планета не имеет твердой поверхности. Юпитер очень быстро вращается вокруг Солнца. День на Юпитере длится всего 12 часов. У Юпитера много спутников, всего их 69.

Сатурн

Сатурн примечателен своими кольцами, состоящими из пыли, камней, льда. Поверхность Сатурна, как и Юпитера, состоит из газовой поверхности. Известно, что планета имеет 62 спутника.

Уран

У Урана также есть кольца, но за ними трудно наблюдать, так как появляются они в определенное время. Уран относится к ледяным гигантам. На поверхности этой планеты царит ужасно низкая температура (-224С). Это самая холодная планета Солнечной системы. Удаленность планеты от Солнца не позволяет лучам нагреть поверхность. На Уране много ледяных облаков. Уран вращается вокруг Солнца в интересном положении: его ось смещена, планета словно лежит на боку.

Нептун

Находится в наибольшей удаленности от Солнца. Нептун был обнаружен не путем наблюдения, а методом математических расчетов. Его поверхность голубого цвета, что делает Нептун особенно красивым и притягательным. На планете бушуют сильные ветры, самые сильные в Солнечной системе.

Объяснение про планетыдетям

История возникновения планет

Около 5 миллиардов лет назад вовсе не было ни Солнца, ни планет. Но потом из безграничного облако газа и пыли начало сжиматься, образуя большое ядро. Так образовалось Солнце. А вокруг Солнца стала вращаться космическая пыль и газ, сбиваясь в единое целое. Так эти скопления стали планетами. Сначала планеты были такими же горячими, как Солнце. Но потом лава остыла, затвердела.

Причины возникновения солнечного излучения

Солнечная радиация образуется в дневные часы во время хромосферных вспышек – гигантских взрывов, происходящих в атмосфере Солнца. Часть солнечного вещества выбрасывается в космическое пространство, образуя космические лучи, главным образом состоящие из протонов и небольшого количеств ядер гелия. Эти заряженные частицы спустя 15-20 минут после того, как солнечная вспышка становится видимой, достигают поверхности земли.

Воздух отсекает первичное космическое излучение, порождая каскадный ядерный ливень, который затухает с понижением высоты. При этом рождаются новые частицы – пионы, которые распадаются и превращаются в мюоны. Они проникают в нижние слои атмосферы и попадают на землю, зарываясь вглубь до 1500 метров. Именно мюоны отвечают за образование вторичного космического излучения и естественной радиации, воздействующей на человека.

Влияние солнечной радиации на организм человека

Говоря о влиянии солнца на организм человека, невозможно определить точно. Какое воздействие на здоровье человека оказывается, вред или польза. Лучи Солнца выделяют ультрафиолетовое и инфракрасное излучение. Лучи солнца — это как килокалории, полученные из пищи. Их дефицит приводит к истощению, и в избыточных количествах они вызывают ожирение. Так и в этой ситуации. Умеренное количество солнечной радиации оказывает положительное влияние на организм, тогда как избыток ультрафиолетового излучения провоцирует появление ожогов и развитие многочисленных заболеваний. Влияние

Положительное влияние инфракрасного излучения

Основная особенность инфракрасных лучей — они создают тепловой эффект, которые оказывают положительное влияние на организм человека. Нагревательный элемент способствует расширению кровеносных сосудов и нормализации кровообращения. Тепло оказывает расслабляющее действие на мышцы, обеспечивая легкий противовоспалительный и обезболивающий эффект. Под воздействием тепла увеличивается обмен веществ, нормализуются процессы усвоения биологически активных компонентов. Инфракрасное излучение солнца стимулирует мозг и зрительный аппарат.

Интересно! Благодаря солнечному излучению синхронизирует биологические ритмы тела, начиная с режимов сна и бодрствования. Лечение инфракрасными лучами солнца улучшает состояние кожи и устраняет угри. Теплый свет поднимает настроение и улучшает эмоциональный фон человека. А также улучшают качество спермы у мужчин и потенцию.

Положительное влияние ультрафиолетового излучения

Несмотря на все споры о негативном влиянии ультрафиолетового излучения на организм, его отсутствие может привести к серьезным проблемам со здоровьем. Это один из важнейших факторов существования. И нехватка ультрафиолетового света в организме, привносит такие изменения: Во-первых, ослабляет иммунную систему (прежде всего влияние оказывается на клетку в организме). Это связано с нарушением поглощения витаминов и минералов, нарушением метаболизма на клеточном уровне.

Солнце восполняет нехватку витамина Д

Существует тенденция к развитию новых или обострению хронических заболеваний, чаще всего возникающих осложнений. Отмеченналетаргия, синдром хронической усталости, снижение уровня эффективности. Отсутствие ультрафиолетового света для детей предотвращает образование витамина D и вызывает замедление. Однако нужно понять, что чрезмерная солнечная активность не принесет пользу организму.

Солнечное излучение в России

В нашей стране с учетом географического расположения богатые УФ-лучами класса В периоды солнечного излучения распределяются неравномерно. Например, в Сочи, Махачкале, Владикавказе они длятся около семи месяцев (с марта по октябрь), а в Архангельске, Санкт-Петербурге, Сыктывкаре продолжаются около трех (с мая по июль) или даже меньше. Прибавьте к этому число пасмурных дней в году, задымленность атмосферы в крупных городах, и становится ясно, что большая часть жителей России испытывает нехватку гормонотропного солнечного воздействия.

Вероятно, поэтому интуитивно мы стремимся к солнцу и рвемся на южные пляжи, при этом забывая, что солнечные лучи на юге абсолютно другие, непривычные нашему организму, и, кроме ожогов, могут спровоцировать сильнейшие гормональные и иммунные всплески, способные увеличить риск онкологических и иных недугов.

Вместе с тем южное солнце способно исцелять, просто во всем должен соблюдаться разумный подход.

Солнечная радиация и изменение климата

Глобальное потепление известно во всем мире. Это повышение температуры из-за сильного удержания солнечной радиации вызывает изменение глобального климата. Это не только означает, что средняя температура на планете повысится, но и изменится климат и все, что с этим связано.

Повышение температуры вызывает дестабилизацию воздушных течений, океанических масс, распределения видов, смены времен года, усиления экстремальных метеорологических явлений (таких как засухи, наводнения, ураганы …) и т. Д.. Вот почему для стабильного восстановления нашего радиационного баланса мы должны сократить выбросы парниковых газов и восстановить наш климат.

Как происходит воздействие

Электромагнитные волны состоят из различных частей. Есть невидимые, инфракрасные и видимые, ультрафиолетовые лучи. Характерно, что радиационные потоки имеют разную структуру энергии и по-разному влияют на людей.

Световой поток может оказывать благотворное, целебное воздействие на состояние человеческого тела. Проходя через зрительные органы, свет регулирует метаболизм, режим сна, влияет на общее самочувствие человека. Кроме того, световая энергия способна вызывать ощущение тепла. При облучении кожи в организме происходят фотохимические реакции, способствующие правильному обмену веществ.

Высокой биологической способностью обладает ультрафиолет, имеющий длину волны от 290 до 315 нм. Эти волны синтезируют витамин D в организме, а также способны уничтожать вирус туберкулеза за несколько минут, стафилококк – в течение четверти часа, палочки брюшного тифа – за 1 час.

Естественные силы организма защищают человека от внезапных атмосферных колебаний: температуры воздуха, влажности, давления. Однако иногда подобная защита ослабевает, что под воздействием сильной влажности совместно с повышенной температурой приводит к тепловому удару.

Воздействие облучения имеет связь от степени его проникновения в организм. Чем длиннее волны, тем сильнее сила излучения. Инфракрасные волны способны проникать до 23 см под кожу, видимые потоки – до 1 см, ультрафиолет – до 0,5-1 мм.

Все виды лучей люди получают во время активности солнца, когда пребывают на открытых пространствах. Световые волны позволяют человеку адаптироваться в мире, именно поэтому для обеспечения комфортного самочувствия в помещениях необходимо создать условия оптимального уровня освещения.

Распределение солнечной радиации по земной поверхности

Солнечная радиация распределяется по земле неравномерно. Это зависит:

1. от плотности и влажности воздуха — чем они выше, тем меньше радиации получает земная поверхность;

2. от географической широты местности — количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади. На Земле это происходит в полосе между от 23° с. ш. и 23° ю. ш., т. е. между тропиками. По мере удаления от этой зоны на юг или на север длина пути солнечных лучей увеличивается, т. е. уменьшается угол их падения на земную поверхность. Лучи начинают падать на Землю под меньшим углом, как бы скользя, приближаясь в районе полюсов к касательной линии. В результате тот же поток энергии распределяется на большую площадь, поэтому увеличивается количество отраженной энергии. Таким образом, в районе экватора, где солнечные лучи падают на земную поверхность под углом 90°, количество получаемой земной поверхностью прямой солнечной радиации выше, а по мере передвижения к полюсам это количество резко сокращается. Кроме того, от широты местности зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на земную поверхность;

3. от годового и суточного движения Земли — в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

4. от характера земной поверхности — чем светлее поверхность, тем больше солнечных лучей она отражает. Способность поверхности отражать радиацию называется альбедо (от лат. белизна). Особенно сильно отражает радиацию снег (90 %), слабее песок (35 %), еше слабее чернозем (4 %).

Земная поверхность, поглощая солнечную радиацию (поглощенная радиация), нагревается и сама излучает тепло в атмосферу (отраженная радиация). Нижние слои атмосферы в значительной мерс задерживают земное излучение. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды.

Та часть суммарной радиации, которая остается после отражения и теплового излучения земной поверхности, называется радиационным балансом. Радиационный баланс земной поверхности меняется в течение суток и по сезонам года, однако в среднем за год имеет положительное значение всюду, за исключением ледяных пустынь Гренландии и Антарктиды. Максимальных значений радиационный баланс достигает в низких широтах (между 20° с. ш. и 20° ю. ш.) — свыше 42*102 Дж/м2, на широте около 60° обоих полушарий он снижается до 8*102-13*102 Дж/м2.

Солнечные лучи отдают атмосфере до 20 % своей энергии, которая распределяется по всей толще воздуха, и потому вызываемое ими нагревание воздуха относительно невелико. Солнце нагревает поверхность Земли, которая передает тепло атмосферному воздуху за счет конвекции (от лат. convectio — доставка), т. е. вертикального перемещения нагретого у земной поверхности воздуха, на место которого опускается более холодный воздух. Именно так атмосфера получает большую часть тепла — в среднем в три раза больше, чем непосредственно от Солнца.

Присутствие в составе атмосферы углекислого газа и водяного пара не позволяет теплу, отраженному от земной поверхности, беспрепятственно уходить в космическое пространство. Они создают парниковый эффект, благодаря которому перепад температуры на Земле в течение суток не превышает 15 °С. При отсутствии в атмосфере углекислого газа земная поверхность остывала бы за ночь на 40-50 °С.

В результате роста масштабов хозяйственной деятельности человека — сжигания угля и нефти на ТЭС, выбросов промышленными предприятиями, увеличения автомобильных выбросов — содержание углекислого газа в атмосфере повышается, что ведет к усилению парникового эффекта и грозит глобальным изменением климата.

Солнечные лучи, пройдя атмосферу, попадают на поверхность Земли и нагревают ее, а та, в свою очередь, отдает тепло атмосфере. Этим объясняется характерная особенность тропосферы: понижение температуры воздуха с высотой. Но бывают случаи, когда высшие слои атмосферы оказываются более теплыми, чем низшие. Такое явление носит название температурной инверсии (от лат. inversio — переворачивание).