Содержание
- Эволюция и будущее
- Строение Солнца
- Состав и структура
- Сколько разновидностей имеет водород
- Спектральный анализ в исследовании Солнца
- Строение Солнца в диаграмме
- Зона лучистого переноса
- Как получают тяжелый водород
- Своенравное Солнце
- Как изучают Солнце
- Физические характеристики Солнца
- Нагрузки и энергопотребление
- История создания
- Тонкости, важные для выбора
- Конвективная зона
- Из каких слоев состоит Солнце
Эволюция и будущее
Ученые убеждены, что Солнце появилось 4.57 млрд. лет назад из-за крушения части молекулярного облака, представленного водородом и гелием. При этом оно запустило вращение (из-за углового момента) и начало нагреваться с ростом давления.
Большая часть массы сконцентрировалась в центре, а остальное превратилось в диск, который позже сформирует известные нам планеты. Гравитация и давление привели к росту тепла и ядерному синтезу. Произошел взрыв и появилось Солнце. На рисунке можно проследить этапы эволюции звезд.
Сейчас звезда пребывает в фазе главной последовательности. Внутри ядра трансформируется больше 4 млн. тон вещества в энергию. Температура постоянно растет. Анализ показывает, что за последние 4.5 млрд. лет Солнце стало ярче на 30% с увеличением в 1% на каждые 100 млн. лет.
Полагают, что в итоге оно начнет расширяться и превратится в красного гиганта. Из-за увеличения размера погибнет Меркурий, Венера и, возможно, Земля. В фазе гиганта пробудет примерно 120 млн. лет.
Потом начнется процесс уменьшения размера и температуры. Оно продолжит сжигать остатки гелия в ядре, пока не закончатся запасы. Через 20 млн. лет оно потеряет стабильность. Земля уничтожится или же раскалится. Через 500000 лет останется лишь половина солнечной массы, а внешняя оболочка создаст туманность. В итоге, мы получим белый карлик, который проживет триллионы лет и лишь потом станет черным.
Строение Солнца
Схема структуры Солнца. Изображение: Pbroks13 / Wikimedia Commons1-Ядро; 2-Зона лучистого переноса; 3-Зона конвективного переноса; 4-Фотосфера; 5-Хромосфера; 6-Корона; 7-Солнечные пятна; 8-Гранулы; 9-Протуберанец
Конечно, у Солнца, состоящего из газов, нет привычной нам твердой поверхности. Значительную ее часть составляет атмосфера, которая по мере движения к центру светила уплотняется. Тем не менее принято выделять 6 «слоев», из которых состоит звезда. Три из них являются внутренними, а следующие три образуют солнечную атмосферу.
Внутреннее строение Солнца
Внутренняя структура нашей звезды включает следующие слои:
Ядро
В центре светила располагается ядро. Именно в этой области идут термоядерные реакции. Радиус ядра оценивается в 150 тыс. км. Температура здесь не опускается ниже 13,5 млн градусов, а давление доходит до 200 млрд атм. Из-за этого вещество здесь находится в крайне плотном состоянии. Его плотность составляет 150 г/куб. см. Это в 7,5 раз выше плотности золота. Именно такие условия необходимы для протекания термоядерных реакций. Надо понимать, что именно в ядре вырабатывается энергия, которую и излучает Солнце. Все остальные области звезды лишь обогреваются ядром, но сами ее не вырабатывают.
Зона лучистого переноса
Над ядром располагается зона радиации, которую также именуют зоной лучистого переноса. Ее внешняя граница проходит по сфере радиусом 490 тыс. км. Температура постепенно падает от отметки в 7 млн градусов на границе с ядром до 2 млн градусов у внешней границы. Также и плотность вещества снижается с 20 до 0,2 г/куб. см. Тем не менее из-за высокой плотности атомы водорода не могут двигаться. То есть если при нагреве, например, воды ее теплые слои поднимаются на поверхность, перенося туда тепло, то здесь такой механизм не работает – вещество остается неподвижным. Единственный способ энергии пробраться через зону радиации – это длительная цепочка поглощений и излучений фотонов атомами водорода. Из-за этого фотон, возникший при термоядерной реакции в ядре, в среднем «пробирается» наружу через зону радиации примерно 170 тыс. лет!
Зона конвективного переноса
Выше располагается зона конвективного переноса толщиной 200 тыс. км. Здесь плотность уже невысока, и вещество активно перемешивается – нагретые газы поднимаются наверх, отдают тепло, остывают и снова погружаются вниз. Скорость газовых потоков может достигать 6 км/с. Именно это движение порождает магнитное поле Солнца. Температура на поверхности падает до 6000° С, а плотность на три порядка ниже плотности земной атмосферы.
Атмосфера
Атмосфера Солнца состоит из следующих слоев:
Фотосфера
Нижний слой атмосферы называют фотосферой. Именно она излучает тот свет, который согревает планеты Солнечной системы. Толщина фотосферы колеблется от 100 до 400 км. На внешней границе фотосферы температура падает до 4700° С.
Хромосфера
Над фотосферой располагается хромосфера – слой толщиной около 2000 км. Её яркость очень мала, поэтому с Земли её можно наблюдать довольно сложно. Удобнее всего это делать во время солнечных затмений. Она имеет специфический красный оттенок. В хромосфере можно наблюдать спикулы – столбы плазмы, выбрасываемые из нижних слоев хромосферы. Время существования одной спикулы не превышает 10 минут, а длина доходит до 20 тыс. км. Одновременно в хромосфере находится около миллиона спикул. Интересно, что с увеличением высоты температура хромосферы не падает, а растет, и на верхней границе может доходить до 20 000° С.
Корона
Верхний слой атмосферы называется короной. Ее верхняя граница до сих пор четко не определена. Вещество в ней крайне разрежено, однако температура в ней может достигать нескольких миллионов градусов. На сегодня ученым не удалось полностью объяснить, за счет каких механизмов солнечная корона разогревается до такой температуры. В короне можно наблюдать протуберанцы – выбросы солнечного вещества, чья высота над поверхностью звезды может достигать 1,7 млн км.
Состав и структура
Звезда наполнена водородом (74.9%) и гелием (23.8%). Среди более тяжелых элементов присутствуют кислород (1%), углерод (0.3%), неон (0.2%) и железо (0.2%). Внутренняя часть делится на слои: ядро, радиационная и конвективная зоны, фотосфера и атмосфера. Наибольшей плотностью (150 г/см3) наделено ядро и занимает 20-25% всего объема.
На оборот оси звезда тратит месяц, но это приблизительная оценка, потому что перед нами плазменный шар. Анализ показывает, что ядро вращается быстрее внешних слоев. Пока экваториальная линия тратит 25.4 дней на оборот, то у полюсов уходит 36 дней.
В ядре небесного тела формируется солнечная энергия из-за ядерного синтеза, трансформирующего водород в гелий. В нем создается почти 99% тепловой энергии.
Внутренняя структура Солнца. Радиационная зона охватывает 0.25-0.7 солнечного радиуса. Температура падает с отдалением от ядра. Здесь она сокращается от 7 млн. К до 2 млн. С плотностью происходит то же самое – от 20 г/см3 до 0.2 г/см3.
Между радиационной и конвективной зонами расположен переходный слой – тахолин. В нем заметно резкая перемена равномерного вращения радиационной зоны и дифференциальное вращение конвекционной, что вызывает серьезный сдвиг. Конвективная зона находится на 200000 км ниже поверхности, где температура и плотность также ниже.
Видимая поверхность именуется фотосферой. Над этим шаром свет может свободно распространяться в пространство, высвобождая солнечную энергию. В толщину охватывает сотни километров.
Верхняя часть фотосферы уступает по нагреву нижней. Температура поднимается к 5700 К, а плотность – 0.2 г/см3.
Атмосфера Солнца представлена тремя слоями: хромосфера, переходная часть и корона. Первая простирается на 2000 км. Переходная занимает 200 км и прогревается до 20000-100000 К. Четких границ у слоя нет, но заметен нимб с постоянным хаотичным движением. Корона прогревается до 8-20 млн. К, на что влияет солнечное магнитное поле.
Солнечная гелиосфера с кораблями Вояджер-1 и 2
Гелиосфера – магнитная сфера, простирающаяся за черту гелиопаузы (на 50 а.е. от звезды). Ее также называют солнечным ветром.
Сколько разновидностей имеет водород
Ответ на этот вопрос зависит от того, какие изотопы водорода имеются в виду.
Для этого элемента установлено три природных изотопных формы: протий – легкий водород, тяжелый дейтерий и сверхтяжелый тритий. Все они обнаружены в естественном виде.
Помимо них, существуют четыре искусственно синтезированных изотопа: квадий, пентий, гексий и септий. Характеризуются данные разновидности чрезвычайной нестабильностью, время жизни их ядер выражается величинами порядка 10-22 – 10-23 секунд.
Таким образом, всего на сегодняшний день у водорода известно семь изотопных разновидностей
На трех из них, имеющих практическое значение, мы и сосредоточим свое внимание
Спектральный анализ в исследовании Солнца
Очевидно, Солнце — раскаленное тело, испускающее белый свет, спектр которого непрерывен — окружено слоем более холодных, но все же раскаленных газов. Эти газы и образуют вокруг Солнца его оболочку, или атмосферу. А в этой атмосфере содержатся пары натрия, которые и поглощают из лучей солнечного спектра лучи с гой самой длиной волны, которую натрий способен испускать. Поглощая, задерживая эти лучи, пары натрия создают в свете Солнца, прошедшем сквозь его атмосферу и дошедшем до нас, недостаток желтых лучей с этой длиной волны. Вот почему в соответствующем месте желтой части спектра Солнца мы находим темную линию.
Так, не побывав никогда на Солнце, находящемся от нас на расстоянии 150 миллионов километров, мы можем утверждать, что в составе солнечной атмосферы есть натрий.
Таким же образом, определив длины волн других темных линий, видимых в спектре Солнца, и сравнив их с длинами волн ярких линий, испускаемых парами различных веществ и наблюдаемых в лаборатории, мы точно определим, какие еще другие химические элементы входят в состав солнечной атмосферы.
Так было выяснено, что в солнечной атмосфере присутствуют те же химические элементы, что и на земле: водород, азот, натрий, магний, алюминий, кальций, железо и даже золото.
Спектры звезд, свет которых тоже можно направить в спектроскоп, похожи на спектр Солнца. И по темным линиям их мы можем определить химический состав звездных атмосфер так же, как мы определили химический состав солнечной атмосферы по темным линиям спектра Солнца.
Таким путем ученые установили, что даже количественно химический состав атмосфер Солнца и звезд очень похож на количественный химический состав земной коры.
Самый легкий из всех газов, из всех химических элементов — водород — составляет на Солнце 42% по весу. На долю кислорода приходится 23% по весу. Столько же приходится на долю всех металлов, вместе взятых. Углерод, азот и сера составляют вместе 6% от состава солнечной атмосферы. И только 6% приходится на все остальные элементы, вместе взятые.
Надо учесть, что атомы водорода легче всех остальных. Поэтому их число далеко превосходит число всех других атомов. Из каждой сотни атомов в атмосфере Солнца 90 атомов принадлежит водороду.
Средняя плотность Солнца на 40% больше плотности воды и все-таки оно ведет себя во всех отношениях как идеальный газ. Плотность на внешнем видимом краю Солнца составляет приблизительно одну миллионную от плотности воды, в то время как плотность вблизи его центра примерно в 50 раз выше плотности воды.
Строение Солнца в диаграмме
NASA специально разработало для образовательных потребностей схематическое изображение строения и состава Солнца с указанием температуры для каждого слоя:
- (Visible, IR and UV radiation) – это видимое излучение, инфракрасное излучение и ультрафиолетовое излучение. Видимое излучение – это свет, которые мы видим приходящим от Солнца. Инфракрасное излучение – это тепло, которое мы ощущаем. Ультрафиолетовое излучение – это излучение, дающее нам загар. Солнце производит эти излучения одновременно.
- (Photosphere 6000 K) – Фотосфера – это верхний слой Солнца, поверхность его. Температура 6000 Кельвин равна 5700 градусов Цельсия.
- Radio emissions (пер. Радио эмиссия) – Помимо видимого излучения, инфракрасного излучения и ультрафиолетового излучения, Солнце отправляет радио эмиссию, которую астрономы обнаружили с помощью радиотелескопа. В зависимости от количества пятен на Солнце, эта эмиссия возрастает и снижается.
- Coronal Hole (пер. Корональная дыра) – Это места на Солнце, где корона имеет небольшую плотность плазмы, в результате она темнее и холоднее.
- 2100000 К (2100000 Кельвин) – Радиационная зона Солнца имеет такую температуру.
- Convective zone/Turbulent convection (пер. Конвективная зона/Турбулентная конвекция) – Это места на Солнце, где тепловая энергия ядра передается с помощью конвекции. Столбы плазмы доходят до поверхности, отдают своё тепло, и вновь устремляются вниз, чтоб вновь нагреться.
- Coronal loops (пер. Корональные петли) – петли, состоящие из плазмы, в атмосфере Солнца, движущиеся по магнитным линиям. Они похожи на огромные арки, простирающиеся от поверхности на десятки тысяч километров.
- Core (пер. Ядро) – это солнечное сердце, в котором происходит ядерный синтез, при помощи высокой температуры и давления. Вся солнечная энергия происходит из ядра.
- 14,500,000 К (пер. 14,500,000 Кельвин) – Температура солнечного ядра.
- Radiative Zone (пер. Радиационная зона) – Слой Солнца, где энергия передается при помощи радиации. Фотон преодолевает радиационную зону за 200.000 и выходит в открытый космос.
- Neutrinos (пер. Нейтрино) – это ничтожно маленькие по массе частицы, исходящие из Солнца в результате реакции ядерного синтеза. Сотни тысяч нейтрино проходят через тело человека ежесекундно, но никакого вреда нам не приносят, мы их не чувствуем.
- Chromospheric Flare (пер. Хромосферная вспышка) – Магнитное поле нашей звезды может закручиваться, а потом резко разрывается в различных формах. В результате разрывов магнитных полей появляются мощные рентгеновские вспышки, исходящие из поверхности Солнца.
- Magnetic Field Loop (пер. Петля магнитного поля) – Магнитное поле Солнца находится над фотосферой, и видно, так как раскаленная плазма движется по магнитным линиям в атмосфере Солнца.
- Spot– A sunspot (пер. Солнечные пятна) – Это места на поверхности Солнца, где магнитные поля проходят через поверхность Солнца, и на них температура ниже, часто в виде петли.
- Energetic particles (пер. Энергичные частицы) – Они исходят из поверхности Солнца, в результате создается солнечный ветер. В солнечных бурях их скорость достигает скорости света.
- X-rays (пер. Рентгеновские лучи) – невидимые для глаза человека лучи, образующиеся во вспышек на Солнце.
- Bright spots and short-lived magnetic regions (пер. Яркие пятна и недолгие магнитные регионы) – Из-за перепада температур на поверхности Солнца появляются яркие и тусклые пятна.
Положение и движение Солнца
- Солнце и Земля;
- Солнце и Луна;
- Угол наклона Солнца: Как и почему;
- Орбита Солнца;
- Где находится Солнце;
- Солнечное созвездие;
- Где встает Солнце;
- Вращается ли Солнце;
Строение Солнца
- Из чего состоит Солнце;
- Фотосфера;
- Хромосфера;
- Корона Солнца;
- Переходный слой;
- Гелиосфера;
Особенности Солнца
- Солнечный цикл;
- Магнитное поле Солнца;
- Солнечные пятна;
- Факелы;
- Протуберанцы;
- Флоккулы и волокна;
- Спикулы;
- Корональные дыры;
- Корональные петли;
- Корональные стримеры;
- Гранулы и супергранулы;
- Солнечная радиация;
- Солнечный ветер;
Общее
- Эволюция Солнца;
- Как образуется солнечная энергия;
- Почему Солнце горячее;
- Почему Солнце красное;
Зона лучистого переноса
Зона лучистого переноса расположена у границы ядра. Предположительно она занимает около 70 % всего радиуса звезды и состоит из горячего вещества, через которое тепловая энергия передается от ядра к внешнему слою.
В результате термоядерной реакции, протекающей в солнечном ядре, образуются различные радиационные фотоны. Пройдя сквозь зону лучистого переноса и все последующие слои, они выбрасываются в космос и блуждают по там вместе с солнечным ветром, доходящим от Солнца до Земли всего за 8 минут. Ученым удалось установить, что на преодоление этой зоны фотонам требуется приблизительно 200 000 лет.
Зона лучистого переноса есть не только у Солнца, но и у других звезд. Ее величина и сила зависят от размера звезды.
Как получают тяжелый водород
Удобнее всего получать этот изотоп в составе воды. Есть несколько способов обогащения воды дейтерием:
- Ректификация – процесс разделения смесей на компоненты, кипящие при разной температуре. Разделение достигается через многократное испарение и конденсацию смеси изотопов в жидком водороде или воде на специальном оборудовании – ректификационных колоннах, в которых потоки газообразной и жидкой фаз идут во встречных направлениях.
- Электролитическое разделение. Метод основан на том, что при электролизе воды от ее молекул более активно отщепляется легкий изотоп. Электролиз проводят в несколько этапов.
- Ионный изотопный обмен, при котором происходит взаимное замещение ионов разных изотопов в составе реагентов. В настоящее время этот способ с использованием воды и сероводорода в качестве реагирующих компонентов является наиболее эффективным и экономичным.
Своенравное Солнце
Горячие споры по поводу изобилия кислорода и других тяжёлых элементов в составе Солнца начались совершенно случайно. В конце 1990-х годов Асплунд хотел подробнее изучить древние звёзды, которые содержали очень мало подобных элементов. Однако сначала он счёл целесообразным выяснить состав нашего светила чуточку получше.
Для этого он и его коллеги разработали новые модели, анализирующие солнечный спектр — радугу цветов, которую испускает наша звезда. Атомы разных элементов поглощают свет волн различной длины, создавая так называемые спектральные линии. Чем больше атомов определённого элемента существует на поверхности Солнца, тем больше света они поглощают и тем более выражены вышеобозначенные линии. Таким образом, эти атомы способны показать относительное содержание элемента по сравнению с водородом, который является основным «ингредиентом» нашего светила.
Поскольку Солнце считается точкой отсчёта, учёные могут образно видеть всю Вселенную в одном его луче: анализируя солнечный спектр, они могут определить пропорции водорода, углерода, азота и кислорода во всём космосе.Новые модели Асплунда были намного сложнее работ его предшественников, и в них не допускались упрощения и приближения. «Я не ожидал, что это вообще изменит соотношение элементов в составе Солнца, — говорит он. – Это произошло совершенно случайно».
Солнечный спектр (показанный на изображении) можно проанализировать и выявить ключ к разгадке состава Солнца. Атомы на его поверхности поглощают определённые цвета, оставляя тёмные спектральные линии в наблюдаемом диапазоне. Именно они и говорят о пропорциях этого элемента в составе нашего светила. Линии H и K тёмно-фиолетового цвета возникают из-за кальция; пара жёлто-оранжевых D-линий от натрия; и красная линия C от водорода. Однако, спектральные линии кислорода трудно анализировать.
В его моделях каждый из четырёх самых распространённых тяжёлых элементов во Вселенной «потерял в весе». По сравнению с цифрами, опубликованными двадцатью годами ранее, в статье Асплунда и его коллег за 2009-й год рекомендовалось резко снизить количественную оценку этих элементов. Новые модели понизили предполагаемый уровень кислорода в составе Солнца (и, следовательно, во всей Вселенной) на целых 42 процента. Углерод – ещё один химический элемент, необходимый для формирования жизниснизился на 26 процентов, в то время как уровни неона и азота упали на 31 и 40 процентов соответственно.
По всем расчётам, эти четыре элемента составляют подавляющее большинство (88 процентов в работе Асплунда, в других исследованиях немного больше) всех тяжёлых атомов во Вселенной. И если Асплунд был прав, их количество значительно меньше, чем кто-либо думал. А это означало огромные проблемы для моделей, описывающих внутреннее строение нашего светила.
Как изучают Солнце
Солнце — это «матрешка» с множеством слоев, имеющих разный состав и плотность, в них проходят разные процессы. В привычном человеческому глазу спектре наблюдение звезды невозможно, однако в настоящее время созданы спектроскопы, телескопы, радиотелескопы и прочие приборы, фиксирующие ультрафиолетовое, инфракрасное, рентгеновское излучения Солнца. С Земли наиболее эффективным является наблюдение во время солнечного затмения. В этот короткий период астрономы во всем мире изучают корону, протуберанцы, хромосферу и различные явления, происходящие на единственной доступной для такого подробного изучения звезде.
Физические характеристики Солнца
Красивая симметричность полного солнечного затмения происходит потому, что Солнце в 400 раз больше, чем Луна, но также и в 400 раз дальше от Земли, что делает эти 2 тела одинаковыми в поперечнике по размерам в небе.
В полном объеме Солнца может быть размещено 1,3 миллиона планет размером с Землю.
99,86% от всей массы Солнечной системы сосредоточена в Солнце. Масса Солнца составляет 1 989 100 000 000 000 000 000 млрд. кг или в 333060 больше массы Земли.
Температура внутри Солнца может достигать 15 миллионов градусов по Цельсию. В ядре Солнца, энергия генерируется ядерного синтеза, как водород превращается в гелий. Так как горячие объекты, как правило, расширяются, Солнце взрывается как гигантская бомба, если бы не было его огромной гравитационной силы. Температура на поверхности Солнца ближе к 5600 градусов по Цельсию.
Земное ядро почти такое же горячее как поверхность Солнца, что составляет примерно 5600 градусов по Цельсию. Более холодными являются определенные зоны называемые солнечными пятнами (3,800° С) .
Различные части Солнца вращаются с разной скоростью. В отличие от обычных планет, Солнце является большим шаром, состоящим из невероятно горячего газообразного водорода. Из-за его подвижности, различные части Солнца вращаются с разной скоростью. Чтобы увидеть, как быстро вращается поверхность, необходимо наблюдать за движением солнечных пятен относительно его поверхности. Пятнам на экваторе требуется 25 земных суток, чтобы сделать один оборот, в то время как пятна на полюсах делают оборот за 36 дней.
Внешняя атмосфера Солнца горячее, чем его поверхность. Поверхность Солнца достигает температуры 6000 градусов Кельвина. Но это на самом деле гораздо меньше, чем атмосфера Солнца. Над поверхностью Солнца является область атмосферы, называемой хромосферы, где температура может достигать 100000 Кельвин. Но это ничего не значит. Там в еще более отдаленной регион, называемый коронный, который простирается до объема, даже больше, чем само Солнце. Температура в короне может достигать 1 млн. Кельвин.
Внутри Солнца, где происходят термоядерные реакции температура достигает немыслимых 15 миллионов градусов.
Солнце является почти идеальной сферой с разницей всего в 10 км в диаметре между полюсами и экватором. Средний радиус Солнца составляет 695 508 км (109,2 х земного радиуса).
По типу звездной величины оно относится к желтому карлику (G2V).
Диаметр Солнца составляет 1 392 684 километров.
Солнце имеет очень сильное магнитное поле. Солнечные вспышки происходят, когда энергетические потоки заряженных частиц высвобождаются Солнцем во время магнитных бурь, которые мы видим, как солнечные пятна. В солнечных пятнах, магнитные линии скручены и они вращаются, так же, как торнадо на Земле.
Существует ли вода на Солнце? Довольно странный вопрос… Ведь мы знаем, что водорода на Солнце, основное элемента воды, очень много, но чтобы была вода ещё нужен и такой химический элемент как кислород. Не так давно, международная группа ученых обнаружила, что Солнце есть вода (в частности, водяной пар).
Нагрузки и энергопотребление
Принудить энергию солнца работать на себя непросто и дорого. Первый шаг — определить для своего хозяйства оптимальную пиковую нагрузку и рациональное среднесуточное энергопотребление. Первый параметр определяют в киловаттах, а второй — в киловатт-часах.
Пик нагрузки приходится на тот момент, когда возникает необходимость включить одновременно несколько единиц домашней техники. Для вычисления мощности, каждую из них суммируют, учитывая высокие пусковые характеристики отдельных ее частей. Владея сведениями о максимуме потребляемой мощности, можно исключить те электроприборы, одновременная работа которых не так уж необходима. От этого показателя зависит выбор мощностных характеристик элементов электростанции, а следовательно, и стоимость ее в целом. Если мощность электроприбора и время, в течение которого он функционирует на протяжении суток, перемножить, узнаем потребность его в электроэнергии на сутки.
Путем сложения суточного электропотребления каждой единицы домашней техники вычисляют общую среднесуточную потребность в электроэнергии. Только при таком подходе можно расходовать солнечное электричество рационально. Полученные итоговые значения нужны и для вычисления емкости аккумуляторов
Стоимость этой важной единицы системы также зависит от итогов вычислений
История создания
Так исторически сложилось, что солнечные батареи – это уже вторая попытка человечества обуздать безграничную энергию Солнца и заставить ее работать себе на благо. Первыми появились солнечные коллекторы (солнечные термальные электростанции), в которых электричество вырабатывает нагретая до температуры кипения под сконцентрированными солнечными лучами вода.
Солнечные же батареи производят непосредственно электричество, что намного эффективнее. При прямой трансформации теряется значительно меньше энергии, чем при многоступенчатой, как у коллекторов (концентрация солнечных лучей, нагрев воды и выделение пара, вращение паровой турбины и только в конце выработка электричества генератором).
Современные солнечные батареи состоят из цепи фотоэлементов – полупроводниковых устройств, преобразующих солнечную энергию напрямую в электрический ток. Процесс преобразования энергии солнца в электрической ток называется фотоэлектрическим эффектом.
Данное явление открыл французский физик Александр Эдмон Беккерель в середине XIX века. Первый же действующий фотоэлемент спустя полвека создал русский ученый Александр Столетов. А уже в двадцатом столетии фотоэлектрический эффект количественно описал не требующий представления Альберт Эйнштейн.
Тонкости, важные для выбора
Чтобы оборудование оказалось максимально эффективным, рекомендуют определиться со следующими вопросами:
- Формат использования. Он определяет финансовую сторону. Одно дело – портативная панель, которую можно повесить на окно или взять в поездку, совсем другое – полноценная система, для установки на крышу дома. Стоимость последней зависит от страны-производителя и мощности.
- Характеристики. Чтобы выбрать модель нужного типа и мощности, полезно обратиться к специалистам, но здесь все также упирается в способ использования. Для зарядки фонарика хватит панели мощностью в 3-4 Вт, для дачного холодильника понадобится система до 100 Вт.
- Расположение. Для монтажа солнечных панелей выбирают поверхность, ориентированную на юг, без затененных участков. Угол наклона выбирают равным широте местности и корректируют в зависимости от времени года: летом увеличивают на 6°, зимой на столько же уменьшают
Конвективная зона
Зона конвекции — последняя во внутреннем строении Солнца и других подобных ему звезд. Она расположена снаружи зоны лучистого переноса и занимает последние 20 % от радиуса Солнца (около трети от объема звезды). Энергия в ней передается конвекцией. Конвекция — это передача тепла струями и потоками, посредством активного перемешивания. Этот процесс напоминает кипение воды. Потоки горячего газа перемещаются к поверхности и отдают тепло наружу, а остывший газ устремляется обратно, вглубь Солнца, благодаря чему реакция ядерного синтеза продолжается. По мере приближения к поверхности температура вещества в конвективной зоне падает до 5800 К. Конвективная зона, как и зона лучистого переноса, есть почти у всех звезд.
Все вышеперечисленные слои Солнца не наблюдаемы.
Из каких слоев состоит Солнце
На первый взгляд, Солнце — просто шар, состоящий из гелия и водорода, но при более глубоком изучении видно, что оно состоит из разных слоев. При движении к ядру, температура и давление увеличиваются, в результате этого были созданы слои, так как при различных условиях водород и гелий имеют разные характеристики.
Графическое представление слоев Солнца
Солнечное ядро
Начнем наше движение по слоям от ядра к наружному слою состава Солнца. Во внутреннем слое Солнца – ядре, температура и давление очень высокие, способствующие для протекания ядерного синтеза. Солнце создает из водорода атомы гелия, в результате этой реакции образуется свет и тепло, которые доходят до Земли. Принято считать, что температура на Солнце около 13,600,000 градусов по Кельвину, а плотность ядра в 150 раз выше плотности воды.
Ученые и астрономы считают, что ядро Солнца достигает около 20% длины солнечного радиуса. И внутри ядра, высокая температура и давление способствуют разрыву атомов водорода на протоны, нейтроны и электроны. Солнце преобразовывает их в атомы гелия, не смотря на их свободно плавающее состояние.
Такая реакция называется экзотермической. При протекании этой реакции выделяется большое количество тепла, равное 389 х 1031 дж. в секунду.
Радиационная зона Солнца
Эта зона берет свое начало у границы ядра (20% солнечного радиуса), и достигает длины до 70% радиуса Солнца. Внутри этой зоны находится солнечное вещество, которое по своему составу достаточно плотное и горячее, поэтому тепловое излучение проходит через него, не теряя тепло.
Внутри солнечного ядра протекает реакция ядерного синтеза – создание атомов гелия в результате слияния протонов. В результате этой реакции происходит большое количество гамма-излучения. В данном процессе испускаются фотоны энергии, затем поглощаются в радиационной зоне и испускаются различными частицами вновь.
Траекторию движения фотона принято называть «случайным блужданием». Вместо движения по прямой траектории к поверхности Солнца, фотон движется зигзагообразно. В итоге, каждому фотону необходимо примерно 200.000 лет для преодоления радиационной зоны Солнца. При переходе от одной частицы к другой частице происходит потеря энергии фотоном. Для Земли это хорошо, ведь мы бы могли получать лишь гамма-излучение, идущее от Солнца. Фотону, попавшему в космос необходимо 8 минут для путешествия к Земле.
Большое количество звезд имеют радиационные зоны, и их размеры напрямую зависит от масштаба звезды. Чем меньше звезда, тем меньше будут зоны, большую часть которой будет занимать конвективная зона. У самых маленьких звезд могут отсутствовать радиационные зоны, а конвективная зона будет достигать расстояние до ядра. У самых больших звезд ситуация противоположная, радиационная зона простирается до поверхности.
Конвективная зона
Конвективная зона находится снаружи радиационной зоны, где внутреннее тепло Солнца перетекает по столбам горячего газа.
Почти все звезды имеют такую зону. У нашего Солнца она простирается от 70% радиуса Солнца до поверхности (фотосферы). Газ в глубине звезды, у самого ядра, нагреваясь, поднимается на поверхность, как пузырьки воска в лампадке. При достижении поверхности звезды, происходит потеря тепла, при охлаждении газ обратно погружается к центру, за возобновлением тепловой энергии. Как пример, можно привезти, кастрюля с кипящей водой на огне.
Поверхность Солнца похожа на рыхлую почву. Эти неровности и есть столбы горячего газа, несущие тепло к поверхности Солнца. Их ширина достигает 1000 км, а время рассеивания достигает 8-20 минут.
Астрономы считают, что звезды маленькой массы, такие как красные карлики, имеющие только конвективную зону, которая простирается до ядра. У них отсутствует радиационная зона, что нельзя сказать о Солнце.
Фотосфера
Единственный видимый с Земли слой Солнца – фотосфера. Ниже этого слоя, Солнце становится непрозрачным, и астрономы используют другие методы для изучения внутренней части нашей звезды. Температуры поверхности достигает 6000 Кельвин, светится желто-белым цветом, видимым с Земли.
Атмосфера Солнца находится за фотосферой. Та часть Солнца, которая видна во время солнечного затмения, называется короной.