Орбита луны

Будущее лунной орбиты

Мы уже знаем, что спутник постепенно отдаляется по орбите от планеты (1-2 см в год). И это влияет на то, что с каждым веком день у нас становится на 1/500 секунды длиннее. То есть, примерно 620 млн. лет назад Земля могла похвастаться лишь 21 часом.

Сейчас сутки охватывают 24 часа, но Луна не прекращает попыток сбежать. Мы привыкли к спутнику и грустно терять такого напарника. Но отношения между объектами меняются. Интересно лишь, как это отразится на нас.

  • Интересные факты о Луне;
  • Что такое Луна?
  • Как образовалась Луна;
  • Как сформировалась Луна?
  • Постройка лунной базы: часть 1
  • Постройка лунной базы: часть 2
  • Постройка лунной базы: часть 3
  • Постройка лунной базы: часть 4
  • Как можно уничтожить Луну?
  • Как понять, что лунная посадка не была фальшивкой?
  • Нужна ли нам Луна для выживания?
  • Как заработать на Луне?
  • Как в НАСА записали отправку астронавтов с Луны?
  • Куда лучше направиться: на Марс или Луну?
  • Не пришло ли время вернуться на Луну?
  • Какое настоящее название Луны?

Положение и движение Луны

  • Орбита Луны;
  • Солнце и Луна
  • Почему Солнце не поглотит Луну?
  • Какие бывают фазы Луны
  • Что такое выпуклая Луна?
  • Почему Луна кажется такой большой?
  • Почему Луна удаляется от нас?
  • Почему мы видим Солнце и Луну одновременно?
  • Как долго добираться до Луны?
  • Расстояние от Земли до Луны;
  • Вращение Луны;
  • Обратная сторона Луны;
  • Второй земной спутник покидает нас

Строение Луны

  • Строение Луны
  • Размеры Луны;
  • Диаметр Луны;
  • Масса Луны;
  • Является ли Луна планетой?

Поверхность Луны

  • Поверхность Луны;
  • Вода на Луне
  • Новые кратеры на Луне
  • Создание Луны: практика формирования кратеров
  • Лавовые трубы на Луне
  • Первые люди на Луне
  • Сколько людей было на Луне?
  • Что находится на дальней стороне Луны?
  • Старое оборудование НАСА можно рассмотреть на Луне
  • Терраформирование Луны
  • Токсичность Луны
  • Атмосфера Луны;
  • Гравитация на Луне;
  • Возраст Луны;
  • Температура на Луне;
  • Почему Луна светит?
  • Почему мы видим «человека на Луне»?
  • Почему на дальней стороне Луны нет морей?
  • Цвет Луны;
  • Море Спокойствия;

Изменения видимой формы Луны

Поскольку Луна — сферическое тело, при её освещении сбоку возникает «серп». Освещённая сторона луны всегда указывает в сторону Солнца, даже если оно скрыто за горизонтом.

Продолжительность полной смены фаз Луны (так называемый синодический месяц) непостоянна из-за эллиптичности лунной орбиты. Средний синодический месяц составляет 29 суток 12 часов 44 минуты 2,82 секунды.

Луна проходит следующие фазы освещения:

  • новолуние — состояние, когда Луна не видна.
  • молодая луна — первое появление Луны на небе после новолуния в виде узкого серпа.
  • первая четверть — состояние, когда освещена половина Луны.
  • прибывающая луна
  • полнолуние — состояние, когда освещена вся Луна целиком.
  • убывающая луна
  • последняя четверть — состояние, когда снова освещена половина Луны.
  • старая луна

Обычно на каждый календарный месяц выпадает по одному полнолунию, но так как фазы Луны сменяются немного быстрее, чем 12 раз в году, иногда случаются и вторые полнолуния за месяц, называемые голубой луной.

Мнемоническое правило определения фаз Луны

Чтобы отличить первую четверть от последней, наблюдатель, находящийся в северном полушарии, может использовать следующие мнемонические правила. Если лунный серп в небе похож на букву «С», то это — луна «Стареющая» или «Сходящая», то есть это последняя четверть. Если же он повёрнут в обратную сторону, то, мысленно приставив к нему палочку, можно получить букву «Р» — луна «Растущая», то есть это первая четверть.

Растущий месяц обычно наблюдается вечером, а стареющий — утром.

Следует заметить, что вблизи экватора месяц всегда виден «лёжа на боку», и данный способ не подходит для определения фазы.

В южном полушарии ориентация серпа в соответствующих фазах противоположная: растущий месяц (от новолуния до полнолуния) похож на букву «С», а убывающий (от полнолуния до новолуния) похож на букву «D» без палочки.

Если по направлению движения луны передний край освещённый — луна растущая, затенённый — убывающая.

Лунный цикл орбиты

Лунный цикл порождает фазы Луны — кажущаяся перемена внешнего вида небесного тела в небе из-за изменения количества освещенности. Когда звезда, планета и спутник выстраиваются в одну линию, то угол между Луной и Солнцем составляет 0 градусов.

В этом периоде лунная сторона, повернутая к Солнцу, получает максимум лучей, а обращенная к нам – темная. Далее идет проход и угол растет. После Новолуния объекты разделены на 90 градусов, и мы уже видим иную картину. На нижней схеме можно подробно изучить, как формируются лунные фазы.

Если они расположены в противоположных сторонах, то угол – 180 градусов. Лунный месяц длится 28 дней, во время которого спутник «растет» и «убывает».

При четверти Луна заполнена меньше чем наполовину и растет. Далее идет переход за половину, и она угасает. Мы встречаем последнюю четверть, где освещена уже другая сторона диска.

«Поехали!»

В 1957 году работа советских учёных, конструкторов, инженеров, рабочих, во главе с Сергеем Павловичем Королёвым, увенчалась блестящей победой: 4 октября они вывели на орбиту первый в истории искусственный спутник Земли. А 12 апреля 1961 года отправили в первый космический полёт человека — Юрия Алексеевича Гагарина. На весь мир прозвучало знаменитое гагаринское «Поехали!», и человечество вступило в космическую эру.

Космическая тематика стремительно вошла в моду. Естественно, появились новые темы и понятия — ракеты, скафандры, невесомость, первая космическая скорость, вторая космическая скорость. Все мальчишки нашего поколения в мечтах примеряли скафандр космонавта. О невесомости мы поговорим в другой раз, а пока рассмотрим космические скорости.

Что известно о космических скоростях простым людям

На телевидении есть передача, в которой весёлый молодой человек бегает по улицам и задаёт прохожим разные вопросы. За правильный ответ он вручает 1000 рублей. Однажды он задал такой вопрос: «Какую скорость надо развить, чтобы оторваться от Земли?» Первый встречный ответить не смог, и ведущий буквально клещами вытащил из второго ответ, который был признан правильным: «Вторую космическую».

Увы, молодой человек ошибся. Вернее, ошибся не он, а редакторы, придумывающие вопросы и ответы к ним. Точно так, как и редакторы, считают почти все, кто хоть отдалённо слышал про существование первой и второй космических скоростей.

На самом деле, чтобы оторваться от Земли, подходит любая скорость. Уже когда ребёнок подпрыгивает, он отрывается от Земли. Пусть ненадолго, но отрывается. И вообще, до Луны или до другого космического объекта можно добраться с любой скоростью. Для этого надо немного разогнаться, а потом поддерживать силу тяги двигателя, равную силе земного притяжения, и вы будете «бороздить просторы Вселенной» с постоянной скоростью. Более того, если представить, что какой-то чудак сумел построить лестницу до Луны, то вы сможете подняться туда просто пешком. Примерно так, как вы поднимаетесь к себе домой на третий этаж, только гораздо дольше.

А как же космические скорости? Космические скорости подразумевают, что ракета, достигнув их, дальше летит к намеченной цели по инерции, с неработающим двигателем. Это только в мультфильмах про космические путешествия показывают летящие ракеты с работающим двигателем. Но это исключительно для создания иллюзии движения.

Если же в реальных условиях двигатель у ракеты будет работать постоянно, то даже для полёта на Луну потребуется такое количество топлива, что его ни одна ракета не осилит.

Эффекты возмущения

Гравитационные аномалии, слегка искажающие орбиты некоторых лунных орбитальных аппаратов, привели к обнаружению массовых концентраций (так называемых масконов ) под поверхностью Луны, вызванных большими ударами тел в какое-то отдаленное время в прошлом. Эти аномалии имеют достаточную величину, чтобы вызвать значительные изменения лунной орбиты в течение нескольких дней. Они могут привести к тому, что отвес свешивается примерно на треть градуса по вертикали, указывая на маскон, и увеличивают силу тяжести на полпроцента. Apollo 11 первая пилотируемая посадки миссия использовала первую попытку для коррекции эффекта возмущений (замороженные орбиты не были известны в то время). Орбита парковки была «сделана круговой» в 66 морских миль (122 км; 76 миль) на 54 морских мили (100 км; 62 мили), что, как ожидалось, станет номинальной круговой 60 морских миль (110 км; 69 миль), когда LM совершила обратное рандеву с CSM. Но эффект был переоценен в два раза; при сближении орбита была рассчитана на 63,2 морских мили (117,0 км; 72,7 мили) на 56,8 морских миль (105,2 км; 65,4 мили).

Изучение воздействия масконов на лунные космические аппараты привело к открытию в 2001 году » замороженных орбит «, имеющих четыре орбитальных наклонения : 27 °, 50 °, 76 ° и 86 °, при которых космический аппарат может оставаться на низкой орбите неограниченное время. . В Apollo 15 субспутник ПФС-1 и Apollo 16 субспутник ПФС-2 , как небольшие спутники , высвобождаемые из Apollo , способствовали этому открытию. PFS-1 оказался на длительной орбите с наклонением 28 ° и успешно выполнил свою миссию через полтора года. PFS-2 был помещен в особенно нестабильный угол наклона орбиты 11 ° и продержался на орбите всего 35 дней, прежде чем упал на поверхность Луны.

Строение Луны и ее особенности

Луна состоит из коры, верхней мантии, средней мантии, нижней мантии и ядра. Толщина коры Луны в среднем составляет около 68 км, изменяясь от 0 км под лунным морем Кризисов до 107 км в северной части кратера Королёва на обратной стороне. Лунная мантия имеет несколько слоев: верхняя мантия (до 200 – 300 км), средняя мантия (до 500 – 600 км), нижняя мантия (до 800 – 900 км). Оболочка внутреннего ядра Луны имеет радиус около 240 км, а жидкое внешнее ядро имеет радиус примерно 300 – 400 километров.

Строение Луны в разрезе

Поверхность Луны покрыта реголитом — смесью тонкой пыли и скалистых обломков, образующихся в результате столкновений метеоритов с лунной поверхностью. Ударно-взрывные процессы, сопровождающие метеоритную бомбардировку, способствуют взрыхлению и перемешиванию грунта, одновременно спекая и уплотняя частицы грунта.

В лунном реголите много кислорода, входящего в состав оксидов, причём самым распространённым из последних является диоксид кремния— 42,8 %.

Таблица: Химический состав лунного реголита в процентах

Элементы Доставлен «Луной-20» Доставлен «Луной-16»
Si 20 20
Ti 0,28 1,9
Al 12,5 8,7
Cr 0,11 0,2
Fe 5,1 13,7
Mg 5,7 5,3
Ca 10,3 9,2
Na 0,26 0,32
K 0,05 0,12

Поверхность Луны можно разделить на два типа:

  1. Очень старая гористая местность (лунные материки).
  2. Относительно гладкие и более молодые лунные моря.

Лунные «моря», которые составляют приблизительно 16 % всей поверхности Луны, — это огромные кратеры, возникшие в результате столкновений с небесными телами, которые были позже затоплены жидкой лавой. Из-за влияния гравитационного момента при формировании Луны, её «моря», под которыми лунными зондами обнаружены более плотные, тяжёлые породы, сконцентрированы на обращённой к Земле стороне спутника.

Большинство кратеров на обращённой к Земле стороне Луны названо по имени знаменитых людей в истории науки, таких как Тихо Браге, Коперник и Птолемей. Детали рельефа на обратной стороне имеют более современные названия типа Аполлон, Гагарин и Королёв.

На обратной стороне Луны расположена огромная впадина Бассейн Южный полюс — Эйткен диаметром 2250 км и глубиной 12 км — это самый большой бассейн в Солнечной системе, появившийся в результате столкновения. Море Восточное в западной части видимой стороны (его можно видеть с Земли) является отличным примером многокольцевого кратера.

Также выделяют второстепенные детали лунного рельефа — купола, хребты, борозды — узкие извилистые долиноподобные понижения рельефа.

На Луне имеется вода. В регионе северного полюса обнаружено не менее 600 млн. тонн воды, большая часть которой находится в виде ледяных глыб, покоящихся на дне лунных кратеров. Всего вода была обнаружена в более чем 40 кратерах, диаметр которых варьирует от 2 до 15 км.

На Луне присутствуют сейсмические колебания поверхности, называемые Лунотрясениями, которые можно разделить на 4 группы:

  • приливные, случаются дважды в месяц, вызваны воздействием приливных сил Солнца и Земли;
  • тектонические — нерегулярные, вызваны подвижками в грунте Луны;
  • метеоритные — из-за падения метеоритов;
  • термальные — их причиной служит резкий нагрев лунной поверхности с восходом Солнца.

Сидерический и синодический месяцы

Период, за который Луна вращается вокруг Земного шара относительно неподвижных звезд, называется сидерическим месяцем. Его продолжительность составляет 27.32 суток. За одни сутки небесное тело смещается на 13,2. Луна, Солнце по эклиптике движутся в одну и ту же сторону. За сидерический месяц Солнце переместится по эклиптике приблизительно на 27, а Луне потребуется еще 2.21 суток, чтобы возвратиться в исходное положение по отношению к Солнцу. Период, за который Луна вращается вокруг Земли относительно Светила, принято называть в астрономии синодическим месяцем. В отличие от сидерического, длительность синодического месяца немного больше и составляет 29,53 суток.

Внешний вид Луны напрямую зависит от взаимного расположения Солнца и Луны. Именно поэтому под понятием «месяц» подразумевают именно синодический месяц. За начало синодического месяца принимается расположение Лунного диска между Земным шаром и Солнцем, когда его сторона, обращенная к Земле, не видна. В этот момент освещается обратная сторона земного спутника.

Движение Луны по небесной сфере

Между временным отрезком вращения Луны вокруг своей оси и вокруг Земного шара можно поставить знак равенства. Это время одинаково и составляет примерно 28 суток. Это и стало причиной того, что, наблюдая за природным спутником, человек видит постоянно только одну его сторону. Луна сильно влияет на планету. Благодаря гравитационной силе на Луне происходит притягивание большого количества водных масс на Земном шаре, что создает эффект прилива. На максимально приближенной к спутнику стороне планеты наблюдаем приливы, а по обоим ее бокам отливы. Приливы также будут на противоположной стороне Земли, но они образуются уже в результате гравитации Солнца. В то время как Земной шар движется вокруг своей оси, приливные волны «следуют» за диском Луны и оказывают воздействие на него. В связи с тем, что расстояние между Землей и Луной постоянно меняется, приливообразующая сила Луны также может изменяться до 40% в течение месяца. Приливообразующая сила Солнца в течение года меняется всего лишь на 10%. Лунные приливы в 2,17 раз сильнее солнечных.

Движение большой массы воды, которая образуется во время приливов и отливов, приводит не только к замедлению движения Земного шара, но и к ускорению и «отталкиванию» Луны от Земли.Ежегодно расстояние, на которое ночное светило удаляется от планеты, составляет 38 мм. Именно из-за приливного ускорения лунная орбита напоминает собой спираль, которая медленно раскручивается.

Также будет интересно знать, что наблюдатели видят с поверхности Земли где-то 55%от всей площади Луны. Причиной этому является эллиптическая форма орбиты и небольшое наклонение оси вращения Луны по отношению к орбитальной плоскости.

Лунные затмения

Лунное затмение — одно из немногих небесных явлений, доступных любительским средствам фотосъемки. Во время лунного затмения на край серебристого диска полной Луны в течение часа постепенно накатывает что-то круглое и красное, словно большой диск окрашенного стекла, пока все светило не скроется в этой красноте. Луна долго остается в таком виде, а затем красный круг начинает сползать с ее правого края.

Лунное затмение

Причина лунных затмений стала в какой-то степени понятна уже восточным мудрецам много тысяч лет назад. Но, как и все важные знания о небе, она была жреческой тайной. Греческие ученые осмыслили и рассекретили халдейские премудрости.

Аристотель четко сформулировал эту истину и сделал очень важный вывод: раз конус тени во всякое затмение имеет круглое сечение, значит, и Земля наша округла и может быть только шаром. Это было первое (но не единственное) доказательство шарообразности Земли.

Если бы плоскость орбиты Луны совпадала с плоскостью земной орбиты (плоскостью эклиптики), то затмения Луны повторялись бы каждое полнолуние, т. е. регулярно через 29,5 суток. Но месячный путь Луны наклонен к плоскости эклиптики на 5°, и Луна дважды в месяц лишь пересекает «круг затмений» в двух «рискованных» точках. Эти точки называются узлами лунной орбиты. Следовательно, для того чтобы произошло лунное затмение, необходимо совпадение двух независимых условий: должно быть полнолуние и Луна в это время должна пребывать в узле своей орбиты или где-то рядом.

В зависимости от того, насколько близко Луна окажется к узлу орбиты в час затмения, она может пройти через середину конуса тени, и затмение будет максимально продолжительным, а может пройти краем тени, и тогда мы увидим частное лунное затмение. Конус земной тени окружен полутенью. В эту область пространства попадает лишь часть солнечных лучей, не заслоненная Землей. Поэтому бывают полутеневые затмения. О них тоже сообщается в астрономических календарях, но эти затмения неразличимы для глаза, только фотоаппарат и фотометр способны отметить помрачение Луны во время полутеневой фазы или полутеневого затмения. Когда же полнолуние случается далеко от узлов лунной орбиты, Луна проходит выше или ниже тени и затмения не происходит.

Лунные затмения происходят в полнолуние, в такие моменты, когда Луна оказывается точно позади Земли и на нее падает гигантская тень нашей планеты, заслоняющей солнечный свет

Восточные жрецы, еще не очень четко все это понимая, веками вели упорный счет полным и частным затмениям. На первый взгляд в расписании затмений не обнаруживается никакого порядка. Бывают годы, когда случается три лунных затмения, а бывает, что и ни одного. К тому же лунное затмение видно только с той половины земного шара, где Луна в этот час находится над горизонтом, так что с любого места на Земле, например из Египта, можно наблюдать только чуть больше половины всех лунных затмений.

Но упорным наблюдателям небо открыло наконец великую тайну: за 6585,3 суток (так называемый сарос) по всей Земле в среднем происходят 28 лунных затмений. В следующие 18 лет 11 дней 8 ч (а это и составляет названное число суток) все затмения будут повторяться по тому же расписанию. Остается только ко дню каждого затмения прибавить 6585,3 дня. Так вавилонские астрономы научились предсказывать затмения через «повторение». По-гречески это «сарос». Сарос позволяет рассчитывать затмения на сотни лет вперед.

Когда движение Луны по орбите было изучено более точно, астрономы научились вычислять не только день затмения, как это делалось по саросу, но и точное время его начала.

Силы, заставляющие Луну вращаться

В реальности это очень сложный трудноописуемый с научной точки зрения процесс движения космического тела, протекающий под воздействием множества различных факторов. Таких, например как, форма Земли, если мы помним из школьной программы, она немного сплюснута, а так же очень сильно влияет то, что например, Солнце притягивает ее в 2,2 раза сильнее, чем наша родная планета.

Снимки космического аппарата Deep Impact последовательность перемещения Луны

При этом производя точные расчеты движения, необходимо так же учитывать, что посредством приливного взаимодействия Земля передает Луне момент импульса вращения, тем самым создавая силу, заставляющую ее отдаляться от себя. При этом гравитационное взаимодействие данных космических тел является не постоянным и с увеличением расстояния оно уменьшается, приводя к уменьшению и скорость удаления Луны. Вращение Луны вокруг Земли относительно звёзд называется сидерическим месяцем и равен 27,32166 суток.

Луна: на пороге «лунного дома»

На этом исследование Луны надолго застопорилось. В 20 в. росли мощность и разрешающая способность астрономических инструментов, но это лишь позволяло увидеть более мелкие детали рельефа и получить спектры отраженного света различных областей нашего спутника.

Только с началом космической эры объем знаний о Луне начал расти подобно лавине.

13 сентября 1959 г. космический аппарат «Луна-2» (СССР) впервые в истории достиг поверхности Луны. В том же году станция «Луна-3» пролетела вблизи Луны и передала на Землю фото той части лунной поверхности, которой никогда не видел ни один землянин.

Одновременно в США началась реализация проекта по высадке человека на Луну «Аполлон». Космические аппараты «Сервейер» и «Лунар орбитер» совершили первые мягкие посадки на ее поверхность и передали детальные изображения практически всей Луны с малой высоты.

В ходе космических пилотируемых полетов по программе «Аполлон» с 1969 по 1972 г. были осуществлены шесть удачных высадок земных астронавтов на поверхность Луны.

Первым человеком, ступившим на поверхность нашего спутника, стал американец Нил Армстронг — это произошло 21 июля 1969 г. На Землю было доставлено большое количество образцов лунного грунта и горных пород — около 380 кг.

Лишь через несколько лет были отправлены на Луну советские радиоуправляемые самоходные исследовательские лаборатории «Луноход-1» и «Луноход-2», а в 1976 г. космический аппарат «Луна-24» (СССР) доставил на Землю новые образцы лунного грунта, но в количестве всего лишь 324 г.

После этого полеты к Луне были надолго прекращены — слишком дорогостоящими и ненадежными были аппараты того времени.

Только в начале 21 в. на Луну отправились исследовательские аппараты, созданные в Китае, Японии, Евросоюзе и Индии. Они позволили этим странам усовершенствовать собственные ракетно-космические системы.

В 2004 г. в США было объявлено о начале создания нового поколения пилотируемых космических кораблей, способных к 2020 г. доставить на Луну астронавтов и заложить первые постоянные лунные базы землян.

Обратная сторона Луны представляет собой идеальное место для создания крупнейшей астрономической обсерватории.

Оптическим телескопам, установленным там, не пришлось бы «пробиваться» сквозь плотную земную атмосферу. А для радиотелескопов сама Луна послужила бы естественным щитом, который надежно прикрыл бы приемники излучения от любых помех с Земли.

Приливная эволюция

Гравитационное притяжение , что прикладывает Луны на Земле является причиной приливов и отливов как в океане и твердой Земле; Солнце имеет меньшее приливное влияние. Твердая Земля быстро реагирует на любое изменение приливного воздействия, искажение принимает форму эллипсоида с высокими точками примерно под Луной и на противоположной стороне Земли. Это результат высокой скорости сейсмических волн внутри твердой Земли.

Однако скорость сейсмических волн не бесконечна и, вместе с эффектом потери энергии внутри Земли, это вызывает небольшую задержку между прохождением максимального форсирования, вызванного Луной, и максимальным земным приливом. Поскольку Земля вращается быстрее, чем Луна движется по своей орбите, этот небольшой угол создает гравитационный момент, который замедляет Землю и ускоряет Луну на ее орбите.

В случае океанских приливов скорость приливных волн в океане намного меньше, чем скорость приливного воздействия Луны. В результате океан никогда не находится почти в равновесии с приливным воздействием. Вместо этого форсирование порождает длинные океанские волны, которые распространяются вокруг океанских бассейнов до тех пор, пока в конечном итоге не теряют свою энергию из-за турбулентности либо в глубоком океане, либо на мелководных континентальных шельфах.

Хотя реакция океана является более сложной из двух, можно разделить океанские приливы на небольшой эллипсоидный член, который влияет на Луну, плюс второй член, который не имеет никакого эффекта. Эллипсоид океана также замедляет Землю и ускоряет Луну, но поскольку океан рассеивает так много приливной энергии, современные океанские приливы имеют на порядок большее влияние, чем твердые земные приливы.

Из-за приливного момента, вызванного эллипсоидами, часть углового (или вращательного) момента Земли постепенно передается во вращение пары Земля-Луна вокруг их общего центра масс, называемого барицентром. См. Более подробное описание в разделе » Приливное ускорение» .

Этот немного больший орбитальный угловой момент приводит к увеличению расстояния Земля-Луна примерно на 38 миллиметров в год. Сохранение углового момента означает, что осевое вращение Земли постепенно замедляется, и из-за этого ее день удлиняется примерно на 24 микросекунды каждый год (без учета ). Обе цифры действительны только для текущей конфигурации континентов. Приливные ритмы 620 миллионов лет назад показывают, что на протяжении сотен миллионов лет Луна удалялась со средней скоростью 22 мм (0,87 дюйма) в год (2200 км или 0,56% или расстояние Земля-Луна за сто миллионов лет). и день удлинялся в среднем на 12 микросекунд в год (или 20 минут на сто миллионов лет), что составляет примерно половину их текущих значений.

Нынешняя высокая скорость может быть связана с почти резонансом между естественными частотами океана и частотами приливов. Другое объяснение состоит в том, что в прошлом Земля вращалась намного быстрее, день, возможно, длился всего 9 часов на ранней Земле. Возникающие в результате приливные волны в океане были бы намного короче, и для длинноволнового приливного воздействия было бы труднее возбуждать коротковолновые приливы.

Луна постепенно удаляется от Земли на более высокую орбиту, и расчеты показывают, что это будет продолжаться около 50 миллиардов лет. К тому времени Земля и Луна будут находиться во взаимном спин-орбитальном резонансе или приливной блокировке , при которой Луна будет вращаться вокруг Земли примерно за 47 дней (в настоящее время 27 дней), а Луна и Земля будут вращаться вокруг своих осей в в то же время, всегда лицом друг к другу с одной стороны. Это уже произошло с Луной — та же сторона всегда обращена к Земле — и также медленно происходит с Землей. Однако замедление вращения Земли происходит недостаточно быстро, чтобы вращение увеличилось до месяца, прежде чем другие эффекты изменят ситуацию: примерно через 2,3 миллиарда лет увеличение солнечной радиации вызовет испарение океанов Земли, устраняя основная часть приливного трения и ускорения.

Первая космическая скорость

Первая космическая скорость — это скорость, с которой надо горизонтально запустить объект, чтобы он стал вращаться вокруг Земли по круговой орбите.

Чем больше высота, с которой мы запускаем объект, тем меньше эта скорость. Например, Международная космическая станция летает на высоте 400 км со скоростью 7,6 км/с, а Луна — на расстоянии 384 500 км от Земли со скоростью 1 км/с. «Нулевой» высоте соответствует скорость 7,9 км/с, что обычно и называют первой космической скоростью.

Точно так же Земля вращается вокруг Солнца почти по круговой орбите со скоростью ≈ 30 км/с. Это и есть первая космическая скорость относительно Солнца на таком расстоянии от него.

Если скорость спутника чуть больше первой космической для его высоты, его орбита будет эллипсом. Все спутники вокруг Земли и планеты вокруг Солнца движутся именно по эллипсам. И орбиты комет — тоже эллипсы, только очень вытянутые, так что кометы улетают по ним «в даль тёмную», лишь изредка возвращаясь к Солнцу «погреть бока».

Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Вторая космическая скорость

Вторая космическая скорость (параболическая скорость, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела.

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой:

  • для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца.
  • для Солнца вторая космическая скорость составляет 617,7 км/с.
  • для Луны скорость убегания равна 2,4 км/с, несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики.

Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.

Формула

Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния .

Расстояние от Земли до Луны

Яркость Луны зависит от ее близости к нам. Во всем небе найдется очень немного доступных нашему зрению тел меньше. Но Луна имеет то большое преимущество, что она много ближе к нам, чем какое-либо другое тело. Расстояние до неё от Земли равняется только 384 467 километров. Это меньше, чем десять раз взятая окружность Земли. Сравнительно с расстоянием от Солнца или Марса это, конечно, очень немного. Оно дает нам то большое преимущество, что мы можем с помощью наших телескопов изучать предмет нашего интереса более подробно, чем какое-либо иное тело на небе.

Сравнение строения Луны и планет земной группы

Что такое прилив?

Для того чтобы понять суть этого явления и уверенно ответить на вопрос о том, вращается ли Луна вокруг собственной оси, необходимо разобрать суть приливных явлений.

Представим себе две горы на поверхности Луны, одна из которых «смотрит» прямо на Землю, другая же находится в противоположной точке лунного шара. Очевидно, что если бы обе горы не были частью одного небесного тела, а вращались вокруг нашей планеты самостоятельно, их вращение не могло бы быть синхронным, та что ближе, по законам ньютоновской механики, должна вращаться быстрее. Именно поэтому массы лунного шара, расположенные в противоположных по направлению к Земле точках, стремятся «убежать друг от друга».