Как наса записывает звук, если звук не распространяется в космосе?

ТОП 5 заблуждений о космосе

Самые распространенные заблуждения о космическом пространстве.

За долгие годы существования кинематографа в сознании людей сложились определенные стереотипы, которые, на самом деле, абсолютно не правдоподобны. Особенно такая динамика характерна для последних десятилетий, когда голливудская фабрика по производству кинофильмов просто в каких-то промышленных масштабах заваливает наши умы своими «шедеврами». И хоть, как правило, правдивости в них совершенно нет, обычный обыватель принимает все за чистую монету.

К сожалению, такой поток заблуждений затронул и тему космоса, по которой современный кинематограф не просто прошелся легким бризом, а смачно проехался тяжелым катком. Как следствие, в итоге обильные кино-ляпы привели к искаженному пониманию зрителями базовых постулатов о космосе. Причем многие об этом даже не задумываются, хотя, на самом деле, это довольно интересно и занятно.

Таким образом, можно выделить основные распространенные заблуждения про нашу вселенную и пространство в целом.

Первое – это распространение звука в вакууме, то есть в космосе. Обычно во всех фильмах и сериалах про космос любое действие, связанное с взрывами и возгораниями в безвоздушном пространстве, сопровождается обильными звуковыми эффектами. Наглядный пример – «звездные войны» Лукаса. Однако не все так просто. В космосе царит вакуум, поэтому звук не может там распространяться ни при каких условиях, как бы авторам «киношедевров» этого не хотелось. Звук может распространяться только в воздухе или, например, в жидкости, поэтому тут все очевидно. Звуки космоса не слышно потому, что там безвоздушная среда, а наши уши воспринимают колебания воздуха. Но есть еще электромагнитные волны, которые беспрепятственно распространяются в вакууме, это ренгеновское и гама-излучения, ультрофиолет, видимый свет, инфакрасное излучение, радиоволны и т.д, которые вы можете послушать на этой странице.

Второе – сами взрывы. Собственно, этот пункт очень сильно перекликается с первым, так как опять же в безвоздушном пространстве, которым космос и является по своей сути, никаких пожаров быть не может по определению

Однако современный кинематограф на это не очень обращает внимание. Пожары должны быть, потому что это зрелищно

И точка.

Третье – полеты в космосе в скафандрах с использованием сжатого воздуха. Это правда лишь отчасти. Да, воспользоваться струей сжатого воздуха можно для небольшой корректировки движения, хотя это, скорее, исключение из правил, чем обыденная ситуация. Но использование ранцев со сжатым воздухом для обильного передвижения, например, по орбите планеты, как это делают герои знаменитого фильма «гравитация», это уже из разряда полнейшей фантастики, не имеющей с реальностью ничего общего.

Четвертое — оборотная сторона Луны, которую никогда не видно с земли и которая, якобы, никогда не освещена солнцем. Как тут не вспомнить знаменитые «Трансформеры 3: темная сторона луны». Все дело в том, что отсутствие прямой видимости с земли одной из сторон луны вовсе не означает, что она никогда не была освещена солнцем. Просто мы ее не наблюдаем, вот и все.

Пятое – абсолютная невесомость. Это, наверное, один из самых сложных моментов для правильного восприятия. Все мы видим, что на МКС земляне «плавают» по помещениям станции, совершенно не испытывая желания приземляться на пол, если его так можно назвать в данном случае. Однако на орбите также действует гравитационное притяжение земли, поскольку МКС вращается вокруг планеты именно за счет ее притяжения. Иначе движение по орбите было бы невозможно. Кроме того, земное притяжение действует и до пределов луны. И даже за ней. А дальше луны земляне еще не летали. Поэтому говорить об абсолютной невесомости, которую испытывают космонавты, не совсем правильно. Сила притяжения – гравитация — действует и на них.

Конечно же, имеются и другие заблуждения на эту тему, но для наглядного понимания, насколько в современном обществе искажено правдивое восприятие космоса, приведенных выше вполне достаточно.

⇡#Первый звук во Вселенной

Каким был самый первый звук? Простой вопрос, но найти на него ответ очень и очень сложно. Вероятно, первый звук должен был родиться вместе с нашей Вселенной. Если придерживаться теории Большого взрыва, то Вселенная по мере остывания (примерный возраст — 400 тысяч лет) была заполнена газом. А раз так, то и звук теоретически мог распространяться в пространстве. Конечно, услышать его не мог никто, но некоторые исследователи космоса убеждены, что сейчас его можно воссоздать. В качестве источника данных, по которым можно представить себе процессы, происходившие в далеком прошлом, ученые предлагают взять карту реликтового излучения, панораму со следами неравномерного остывания Вселенной. Эта неравномерность и есть следствие звуковых колебаний, вероятно, первых акустических процессов в нашем мире.

Данной проблемой заинтересовался профессор Марк Уиттл из Университета Вирджинии. На основе анализа реликтового излучения он создал аудио, которое многие окрестили «криком рождения Вселенной».

Эти космические звуковые волны, которые Уиттл синтезировал на компьютере, имеют протяженность 30000 световых лет. Чтобы их можно было услышать человеческим ухом, ученый сдвинул звучание записи на 55 октав ниже, в слышимый диапазон.

Несмотря на то, что Уиттл смог заглянуть в прошлое, сам он с юмором относится к своему эксперименту. «Прослушав эту запись, должен признать, что Вселенная — это паршивый музыкальный инструмент», — смеется Марк. Однако не все согласны с утверждением Уиттла.

Звук, который можно увидеть

Горячий, намагниченный газ вращается вокруг черной дыры, похожий на воду, циркулирующую вокруг слива. Двигаясь, он создает мощное электромагнитное поле. Достаточно сильное, чтобы ускорить газ возле края черной дыры практически до скорости света, превращая его в огромные всплески, называемые релятивистскими струями. Они вынуждают газ повернуть на своем пути в сторону, и это воздействие вызывает жуткие звуки из космоса.

Они переносятся через кластер Персея в течение сотен тысяч световых лет от своего источника, но звук может путешествовать только до тех пор, пока достаточно газа для его перевозки. Поэтому он останавливается на краю газового облака, заполняющего Персея. Это значит, что невозможно услышать его звук на Земле. Можно увидеть только влияние на газовое облако. Это выглядит так, как если смотреть через пространство на звукоизолированную камеру.

Как «звучат» черные дыры?

«Услышать» черные дыры можно. Только косвенно – точно так же как и «увидеть». Причина известна – ничто не может избежать черной дыры, но это верно только для материи, которая пересекает горизонт событий –гравитационную точку невозврата. Черные дыры могут оказывать и оказывают заметное влияние на окружающую среду.

Один из способов обнаружить черные дыры звездной массы – это найти двойную звездную систему, частью которой они являются. Влияние черной дыры на звезду-компаньона ученые наблюдают здесь, на Земле – существуют эффекты, подобные тому, как черная дыра медленно пожирает своего соседа.

Газ от звезды-компаньона может притягиваться к черной дыре, которая затем закручивается по спирали вокруг черной дыры. Этот диск (называемый аккреционным диском) становится очень, очень горячим, настолько горячим, что испускает рентгеновские лучи. Мы можем видеть эти рентгеновские лучи, даже если не можем видеть саму черную дыру.

Первый в истории снимок горизонта событий черной дыры.

Но не только черные дыры звездной массы имеют аккреционные диски. У сверхмассивных черных дыр, что расположены в центре галактик, он тоже есть. Их аккреционные диски состоят из межзвездного газа, который в изобилии содержится в ядрах галактик. Аккреционные диски странные, что неудивительно, учитывая, что они существуют в экстремальных условиях. Например, когда внутренняя часть аккреционного диска взрывается, мы наблюдаем струи частиц высокой энергии, которые вылетают из черной дыры с противоположных сторон, исходящие из области горизонта событий. Там эти струи подпитываются сильными магнитными полями.

Стив Аллен из Кембриджского Института астрономии считает, что именно струи вызывают звуковые волны, исходящие от черной дыры. Интересно и то, что излучаемые рентгеновские лучи на самом деле соответствуют циклу звуковых волн.

Первый звук во вселенной

Если бы была возможность вернуться в прошлое, примерно в первые 760 000 лет после Большого Взрыва, можно было бы узнать, есть ли в космосе звук. В это время Вселенная была настолько плотной, что звуковые волны могли свободно распространяться.

Примерно тогда же первые фотоны начинали путешествовать в космосе в качестве света. После всё наконец охладилось настолько, чтобы конденсировались в атомы. До того, как произошло охлаждение, Вселенная была заполнена заряженными частицами — протонами и электронами — которые поглощали или рассеивали фотоны, частицы, составляющие свет.

Сегодня он достигает Земли как слабое свечение микроволнового фона, видимое только очень чувствительными радиотелескопами. Физики называют это реликтовым излучением. Это самый старый свет во вселенной. Он отвечает на вопрос, есть ли звук в космосе. Реликтовое излучение содержит запись древнейшей музыки вселенной.

Какие звуки слышны в космосе?

Записывающее устройство установлено внутри корпуса марсохода. Сразу стоит сказать, что оно не предназначено для записи звуков, которые издаются на Марсе. Устройство необходимо, чтобы исследователи могли контролировать работу механизмов марсохода. Например, один микрофон установлен на камере SuperCam и нужен для считывания его щелчков. Слыша их, исследователи будут знать, что камера точно включилась. Еще один микрофон необходим для записи звуков, которые будет издавать аппарат при вхождении в атмосферу планеты.

Примерное расположение микрофона на марсоходе Perseverance

Запись звуков, которые уловили микрофоны аппарата Perseverance, была опубликована на официальном сайте NASA. Если включить аудиозапись, можно услышать равномерный, довольно тихий гул. Эти звуки не издаются космосом, потому что в его пространстве не могут передаваться звуковые волны. Там полная тишина. Слышимые на записи звуки это, скорее всего, шум работающей системы охлаждения. Так как в космосе вакуум, эти звуки передаются по твердому корпусу марсохода в виде вибраций.

Запись с микрофона марсохода Perseverance

Видимый свет

Когда мы смотрим на ночное небо, мы видите яркие огни звезд. Если вы живете в темной местности вдали от городов, то можете наблюдать тысячи подобных объектов. При этом отдельные точки, которые вы видите – это близлежащие звезды. Еще более 200 миллиардов этих небесных тел существуют в одной только нашей галактике. За пределами Млечного Пути, по разным оценкам, находится по крайней мере 100 миллиардов галактик, каждая со своими 100 миллиардами звезд. Почти все эти звезды невидимы для наших глаз.

Видимый свет, который воспринимает глаз человека – это лишь крошечная часть того, что астрономы называют «электромагнитным спектром». Фотоны с большей энергией – это ультрафиолетовое излучение, рентгеновские лучи и гамма-лучи (гамма-лучи обладают наибольшей энергией). Фотоны с меньшей энергией – это инфракрасные и радиоволны (радиоволны имеют наименьшую энергию).

Человеческий глаз под микроскопом.

Электромагнитный спектр включает гамма-лучи, рентгеновские лучи, ультрафиолетовое излучение, инфракрасное излучение, микроволны и радиоволны. Поскольку человеческие глаза воспринимают только видимый свет, нам необходимы специальные телескопы, чтобы уловить остальную часть этого «спектра», а затем превратить их в изображения и графики.

Есть ли в космосе звук?

Когда объект движется — будь то вибрация гитарной струны или взрывающийся фейерверк — он воздействует на близлежащие молекулы воздуха, как бы толкая их. Эти молекулы врезаются в своих соседей, а те, в свою очередь, в следующие. Движение распространяется по воздуху подобно волне. Когда она достигает уха, человек воспринимает ее как звук.

Когда звуковая волна проходит сквозь воздушное пространство, его давление колеблется вверх и вниз, словно морская вода в шторм. Время между этими вибрациями называется частотой звука и измеряется в герцах (1 Гц — это одна осцилляция в секунду). Расстояние между пиками наивысшего давления называется длиной волны.

Звук может распространяться только в среде, в которой длина волны не больше среднего расстояния между частицами. Физики называют это «условно свободной дорогой» — среднее расстояние, которое молекула проходит после столкновения с одной и перед взаимодействием со следующей. Таким образом, плотная среда может передавать звуки с короткой длиной волны и наоборот.

Звуки с длинными волнами имеют частоты, которые ухо воспринимает как низкие тона. В газе со средней длиной свободного пробега, превышающей 17 м (20 Гц), звуковые волны будут слишком низкочастотными, чтобы человек смог их воспринять. Они называются инфразвуками. Если бы существовали инопланетяне с ушами, воспринимающими очень низкие ноты, они бы точно знали, слышны ли звуки в открытом космосе.

Первый звук во вселенной

Если бы была возможность вернуться в прошлое, примерно в первые 760 000 лет после Большого Взрыва, можно было бы узнать, есть ли в космосе звук. В это время Вселенная была настолько плотной, что звуковые волны могли свободно распространяться.

Примерно тогда же первые фотоны начинали путешествовать в космосе в качестве света. После всё наконец охладилось настолько, чтобы конденсировались в атомы. До того, как произошло охлаждение, Вселенная была заполнена заряженными частицами — протонами и электронами — которые поглощали или рассеивали фотоны, частицы, составляющие свет.

Сегодня он достигает Земли как слабое свечение микроволнового фона, видимое только очень чувствительными радиотелескопами. Физики называют это реликтовым излучением. Это самый старый свет во вселенной. Он отвечает на вопрос, есть ли звук в космосе. Реликтовое излучение содержит запись древнейшей музыки вселенной.

Звук, который можно увидеть

Горячий, намагниченный газ вращается вокруг черной дыры, похожий на воду, циркулирующую вокруг слива. Двигаясь, он создает мощное электромагнитное поле. Достаточно сильное, чтобы ускорить газ возле края черной дыры практически до скорости света, превращая его в огромные всплески, называемые релятивистскими струями. Они вынуждают газ повернуть на своем пути в сторону, и это воздействие вызывает жуткие звуки из космоса.

Они переносятся через кластер Персея в течение сотен тысяч световых лет от своего источника, но звук может путешествовать только до тех пор, пока достаточно газа для его перевозки. Поэтому он останавливается на краю газового облака, заполняющего Персея. Это значит, что невозможно услышать его звук на Земле. Можно увидеть только влияние на газовое облако. Это выглядит так, как если смотреть через пространство на звукоизолированную камеру.

Звук, который можно увидеть

Горячий, намагниченный газ вращается вокруг черной дыры, похожий на воду, циркулирующую вокруг слива. Двигаясь, он создает мощное электромагнитное поле. Достаточно сильное, чтобы ускорить газ возле края черной дыры практически до скорости света, превращая его в огромные всплески, называемые релятивистскими струями. Они вынуждают газ повернуть на своем пути в сторону, и это воздействие вызывает жуткие звуки из космоса.

Они переносятся через кластер Персея в течение сотен тысяч световых лет от своего источника, но звук может путешествовать только до тех пор, пока достаточно газа для его перевозки. Поэтому он останавливается на краю газового облака, заполняющего Персея. Это значит, что невозможно услышать его звук на Земле. Можно увидеть только влияние на газовое облако. Это выглядит так, как если смотреть через пространство на звукоизолированную камеру.

Песнь черной дыры

На расстоянии около 220 миллионов световых лет, в центре кластера из тысяч галактик, сверхмассивная черная дыра напевает самую низкую ноту, которую когда-либо слышала вселенная. На 57 октав ниже средней «до», что примерно на миллион миллиардов раз глубже, чем звук той частоты, которую человек может услышать.

Самый глубокий звук, который возможно уловить людям, имеет цикл около одного колебания каждые 1/20 секунды. У черной дыры в созвездии Персея цикл составляет около одного колебания каждые 10 миллионов лет.

Это стало известно в 2003 году, когда космический телескоп NASA «Чандра» обнаружил нечто в газе, заполняющем кластер Персея: концентрированные кольца света и темноты, похожие на рябь в пруду. Астрофизики говорят, что это следы невероятно низкочастотных звуковых волн. Более яркие — это вершины волн, где наибольшее давление на газ. Кольца темнее — это впадины, где давление ниже.

Есть ли в космосе звук?

Когда объект движется — будь то вибрация гитарной струны или взрывающийся фейерверк — он воздействует на близлежащие молекулы воздуха, как бы толкая их. Эти молекулы врезаются в своих соседей, а те, в свою очередь, в следующие. Движение распространяется по воздуху подобно волне. Когда она достигает уха, человек воспринимает ее как звук.

Когда звуковая волна проходит сквозь воздушное пространство, его давление колеблется вверх и вниз, словно морская вода в шторм. Время между этими вибрациями называется частотой звука и измеряется в герцах (1 Гц — это одна осцилляция в секунду). Расстояние между пиками наивысшего давления называется длиной волны.

Звук может распространяться только в среде, в которой длина волны не больше среднего расстояния между частицами. Физики называют это «условно свободной дорогой» — среднее расстояние, которое молекула проходит после столкновения с одной и перед взаимодействием со следующей. Таким образом, плотная среда может передавать звуки с короткой длиной волны и наоборот.

Звуки с длинными волнами имеют частоты, которые ухо воспринимает как низкие тона. В газе со средней длиной свободного пробега, превышающей 17 м (20 Гц), звуковые волны будут слишком низкочастотными, чтобы человек смог их воспринять. Они называются инфразвуками. Если бы существовали инопланетяне с ушами, воспринимающими очень низкие ноты, они бы точно знали, слышны ли звуки в открытом космосе.

Где находится марсоход Perseverance?

Посмотреть на то, где сейчас находится марсоход Perseverance, может каждый. В конце августа агентство NASA запустило , через который можно узнать, в какой точке космоса находится капсула с аппаратом. Да и вообще, через этот сайт можно детально рассмотреть всю Солнечную систему и выяснить, где находятся другие запущенные людьми космические аппараты. Например, через сайт вы можете посмотреть на межпланетную станцию New Horizons, которая была запущена в 2006 году.

Важно отметить, что внутри капсулы также находится вертолет Ingenuity. Он весит менее 1,8 килограмм и способен взлетать, летать на высоте нескольких десятков метров и опускаться на ровную поверхность

У него нет особой миссии — исследователи просто хотят выяснить, могут ли вертолете подобного рода работать в условиях Марса. Если может, инженеры смогут разработать более сложный вертолет и изучить при помощи него участки Красной планеты, до которых не могут добраться обычные марсоходы.

Свет в помощь

Как свет помогает узнать, есть ли звук в космосе? Звуковые волны проходят сквозь воздух (или межзвездный газ) как колебания давления. Когда газ сжимается, становится жарче. В космических масштабах это явление настолько интенсивно, что образуются звезды. А когда газ расширяется, он остывает. Звуковые волны, распространяющиеся по ранней вселенной, вызывали слабые колебания давления в газовой среде, что, в свою очередь, оставляло слабые сбои температуры, отраженные в космическом микроволновом фоне.

Используя температурные изменения, физику Университета Вашингтона Джону Крамеру удалось восстановить эти жуткие звуки из космоса — музыку расширяющейся вселенной. Он умножил частоту в 10 26 раз, чтобы человеческие уши смогли его услышать.

Так что никто действительно не услышит крика в космосе, но останутся звуковые волны, движущиеся сквозь облака межзвездного газа либо в разреженных лучах внешней атмосферы Земли.

Звук, который можно увидеть

Горячий, намагниченный газ вращается вокруг черной дыры, похожий на воду, циркулирующую вокруг слива. Двигаясь, он создает мощное электромагнитное поле. Достаточно сильное, чтобы ускорить газ возле края черной дыры практически до скорости света, превращая его в огромные всплески, называемые релятивистскими струями. Они вынуждают газ повернуть на своем пути в сторону, и это воздействие вызывает жуткие звуки из космоса.

Они переносятся через кластер Персея в течение сотен тысяч световых лет от своего источника, но звук может путешествовать только до тех пор, пока достаточно газа для его перевозки. Поэтому он останавливается на краю газового облака, заполняющего Персея. Это значит, что невозможно услышать его звук на Земле. Можно увидеть только влияние на газовое облако. Это выглядит так, как если смотреть через пространство на звукоизолированную камеру.

Есть ли в космосе звук?

Когда объект движется — будь то вибрация гитарной струны или взрывающийся фейерверк — он воздействует на близлежащие молекулы воздуха, как бы толкая их. Эти молекулы врезаются в своих соседей, а те, в свою очередь, в следующие. Движение распространяется по воздуху подобно волне. Когда она достигает уха, человек воспринимает ее как звук.

Когда звуковая волна проходит сквозь воздушное пространство, его давление колеблется вверх и вниз, словно морская вода в шторм. Время между этими вибрациями называется частотой звука и измеряется в герцах (1 Гц — это одна осцилляция в секунду). Расстояние между пиками наивысшего давления называется длиной волны.

Звук может распространяться только в среде, в которой длина волны не больше среднего расстояния между частицами. Физики называют это «условно свободной дорогой» — среднее расстояние, которое молекула проходит после столкновения с одной и перед взаимодействием со следующей. Таким образом, плотная среда может передавать звуки с короткой длиной волны и наоборот.

Звуки с длинными волнами имеют частоты, которые ухо воспринимает как низкие тона. В газе со средней длиной свободного пробега, превышающей 17 м (20 Гц), звуковые волны будут слишком низкочастотными, чтобы человек смог их воспринять. Они называются инфразвуками. Если бы существовали инопланетяне с ушами, воспринимающими очень низкие ноты, они бы точно знали, слышны ли звуки в открытом космосе.

09.08.2008 21:37конечно.это все голливудские режисёры людям мозги компастируют сценами и выстрелдами в космосе.в космосе невозможно чувствовать скорость или звук или еще что нибудь!!

Человеку — никакие Звук — это периодические колебания давления, которые распространяются в какой-либо среде, например в газе. Чтобы мы слышали звук, он должен быть достаточно громким. Окажись человек в межпланетном или межзвездном пространстве, он бы ничего не услышал (впрочем, человек в принципе не может там находиться). В современных кинотеатрах спецэффекты просто захватывают. Человек сидит в обычном кресле и поистине наслаждается просмотром нового экшена, новой научной фантастикой.

Вам кажется, что противник направляет лазер именно на Вас, а не на корабль в фильме, и кресло то и дело трясет, будто «ваш» космический корабль атакуют со всех сторон. Все то, что мы видим и слышим, поражает наше воображение, и мы сами становимся главными героями этого фильма. Однако, в большинстве кинофильмов, типа «Звездные войны» и «Звездный путь», звуковые эффекты ко многим сценам боя в открытом космосе просто изобилуют.

Кроме того, полет в космос – тяжелое испытание для самого человека, потому что у некоторых людей в космосе начинается нечто вроде морской болезни. Существуют специальные ученые, которые составляют прогноз погоды в космосе. Далее речь пойдет о том, как движется звук и почему человек его воспринимает.

Избранное

См. также

Физика звука

Игорь Есипов • Библиотека • «Квант» №12, 2018

Звучащий мир: голос, ультразвук, терагерцы

15.11.2020 • Игорь Иванов • Видеотека

Разгадана тайна быстрого звука в воде

13.12.2006 • Игорь Иванов • Новости науки

Фононика открывает новые возможности для управления звуком и тепловыми потоками

29.11.2013 • Игорь Иванов • Новости науки

И рыбы уши имеют

Юлия Сапожникова • Библиотека • «Наука из первых рук» №5/6(80), 2018

Что слышат птицы

Ольга Нестеренко • Библиотека • «Химия и жизнь» №5, 2019

Летучие мыши определяют пол сородичей по их эхолокационным сигналам

05.11.2012 • Елена Наймарк • Новости науки

Откуда берутся молния и гром? Почему летучие мыши видят ушами? («Детский университет». Главы из книги)

2017 • Улла Штойернагель, Ульрих Янссен • Книжный клуб • Главы

Ночные кровопийцы, кудряшки и подводные лодки

Григорий Мерцалов • Библиотека • «Квантик» №5, 2014

Кашалот добывает пищу щелканьем и жужжанием

10.05.2006 • Алексей Гиляров • Новости науки

Ударные волны устраняют боль

Сергей Мусатов • Библиотека • «Наука и жизнь» №5, 2013

Как общаются афалины?

Александр Агафонов, Елена Панова • Библиотека • «Природа» №4, 2018

Изучение афалин в природе: история с продолжением

Александр Агафонов, Ирина Логоминова • Библиотека • «Природа» №7, 2018

Язык косаток и его диалекты

Ольга Филатова • Библиотека • «Коммерсантъ Наука» №33, август 2019

Разнообразие звуков китов-убийц зависит от размера их популяции

28.02.2012 • Варвара Веденина • Новости науки

Дельфины раздают «автографы»

Ксения Перфильева • Журнал общей биологии • №1, 2017

Как распространяется.

Звук, который мы слышим это вибрация какого-нибудь вещества, и наши барабанные перепонки воспринимают эту вибрацию.

Вещество заставляет наши барабанные перепонки вибрировать, а уже мозг преобразует вибрацию в узнаваемые шумы.

В 1660 году опытным путём, британский ученный доказал, что для распространения звука нужно вещество. Он поместил свои часы в банку, тиканье часов хорошо прослушивалось, но как только он откачал из банки воздух, тиканье часов перестало слышаться. Вот так, казалось бы, простой опыт доказал то, что сейчас для нас кажется очевидным.

То есть для того, чтобы был не было тишины нужно вещество.

Знаете ли вы?

Турбина и сепаратор Лаваля

Шведский инженер Карл Густав Патрик де Лаваль создал два знаменитых изобретения: центробежный сепаратор и паровую турбину, которые оказались «родственниками».
Однажды молодой Лаваль прочел в газете сообщение, что в Германии изобрели прибор, отдаляющий сливки от молока. Это была машина с периодической загрузкой, т.е. перед тем как снять сливки, прибор останавливали.

Скоро Лаваль создал свой сепаратор, который непрерывно совершенствовал. Сепаратор Лаваля работал без остановки, и им можно было на только отделять сливки от молока, но и разделять два вещества разного удельного веса.
«Представь себе большой волчок, вращающийся со скоростью от 6 тыс. оборотов а минуту. Предположим, что мы вливаем в него непрерывной струей молоко и что съем молока можно производить автоматически, так что сливки и снятое молоко выбрасываются из него порознь…» — говорил Лаваль.
Чтобы создать простой двигатель для сепаратора, Лаваль перепробовал и ременные передачи, и передачи с зубчатыми колесами, но ни одна из них не подходила.

Тогда Лаваль решил использовать турбину. Сначала он поместил прямо на оси сепаратора турбину в виде сегнерова колеса, но это было не экономично.

В результате через несколько лет Лаваль создал свою паровую турбину, в которой были предусмотрены почти все элементы, применяемые и сейчас.

Хотите знать больше?

02.02.2012 00:40Вы в школе учились вообще?Есть технический и физический вакуум

В вакууме они могут лететь только по прямой если у них нет рулевых двигателей. 22.03.2010 22:05Nya, да нет, если смотреть на вселенную не как на темный, черный шарик в котором плавают: галактики, планеты, астероиды и т.д. В голове у вас вакуум. Если вас интересует, что на самом деле происходит в космосе смотрите документальные фильмы, а не фантастические. 14.05.2012 10:23народ а кто-то знает что было до большого взрыва!говорят что в это время наша вселенная вмещалась в маленькую точку размером с булавочную головку!

Плюс есть интересный Эффект Казимира, который вроде как доказан, а значит возможен волновой эффект даже в вакууме, что как бы намекает… В своём изначальном понимании греческий термин «космос» (порядок, миропорядок) имел философскую основу, определяя гипотетический замкнутый вакуум вокруг Земли — центра Вселенной.

Это все свидетельствует о том, что, как бы Голливудские создатели фильмов не изощрялись объяснить слышимые звуки в космосе, все равно, как доказано выше, в космосе человек не слышит ничего.

Космос — это не однородное ничто. Между различными объектами есть облака газа и пыли. Они являются остатками после взрыва сверхновых и местом для формирования звезд. В некоторых областях этот межзвездный газ достаточно плотный, чтобы распространять звуковые волны, но они не восприимчивы для человеческого слуха.