Постоянная скорость

Передвигаемся и перемещаемся

С точки зрения физики перемещение возникает при переходе какого-то объекта из точки 1 в точку 2. Попросту говоря, перемещение — это пройденное объектом расстояние. Рассмотрим, например, движущийся вдоль линейки мячик для игры в гольф, который показан на рис. 3.1. Допустим, что сначала мячик находится возле отметки 0 (схема А).

Пока что все в порядке. Допустим, что мячик сместился на новое место, например на 3 метра вправо (схема Б). В таком случае говорят, что мячик переместился, или произошло перемещение. В данном случае перемещение равно 3 метрам. В исходном положении мячик находился на отметке 0 метров, а в конечном положении — на отметке +3 метра.

В физике перемещение часто обозначают символом ​\( s \)​, т.е. в данном случае \( s \) равно 3 метрам.

Ученые любят очень подробно описывать разные ситуации. Например, исходное положение часто обозначают символом\( s_0 \)(или, в англоязычной литературе,\( s_i \) где ​\( i \)​ обозначает “initial”, т.е. исходный). А конечное положение часто обозначают символом \( s_1 \) (или, в англоязычной литературе, \( s_f \) где ​\( f \)​ обозначает “final”, т.е. конечный). Таким образом, положения на схеме А и схеме Б на рис. 3.1 выражаются символами \( s_0 \) и \( s_1 \) соответственно. А перемещение \( s \) между ними равно их разности, т.е. конечное положение минус исходное положение:

Обратите внимание, что \( s \) отрицательно!

В качестве начальной точки можно выбрать отличное от 0 положение. Например, для перехода между исходным положением на схеме А на рис. 3.1 и конечным положением на схеме В получим следующее перемещение:

Величина перемещения зависит от выбора начальной точки. В простых задачах выбор начальной точки очевиден, а как быть в более сложных случаях, например, когда движение происходит не вдоль линейки?

Разбираемся с осями

В реальном мире объекты редко движутся вдоль линеек, как мячик для гольфа на рис. 3.1. Часто движение происходит в двух или даже трех измерениях пространства. Чтобы измерить движение в двух пространственных измерениях, нужно иметь две пересекающиеся линейки, которые называются осями. Горизонтальную ось называют осью X, а вертикальную — осью Y, а при движении в трехмерном пространстве используют еще одну ось Z (если представить, что оси X и Y лежат в плоскости страницы, то ось Z как бы “торчит” из нее).

На рис. 3.2 показан пример движения мячика для гольфа в двумерном пространстве. Мячик движется из центра рисунка в верхний правый угол.

Используя оси, можно сказать, что мячик передвинулся на +4 метра по оси X и на +3 метра по оси Y. Новое положение мячика обозначается парой чисел (4; 3), где первое число относится к оси X, а второе — к оси Y, т.е. оно выражается в формате \( (x,y) \).

Чему равно перемещение? Изменение положения по оси X обозначается символом ​\( \Delta x \)​ (греческий символ ​\( \Delta \)​ произносится “дельта” и означает “изменение”) и равно: конечное положение минус исходное положение. Если мячик стартует из центра рисунка, т.е. из положения (0; 0), то изменение положения по оси X равно:

Аналогично, изменение положения по оси Y равно:

Допустим, что нужно вычислить величину суммарного перемещения по обеим осям X и Y. Иначе говоря, насколько далеко удалился мячик от исходного положения в центре рисунка? Это можно подсчитать на основе теоремы Пифагора, т.е. выполнить следующие вычисления:

Итак, величина перемещения мячика равна 5 метрам.

Измеряем скорость

В предыдущих разделах рассматривалось движение в одном или двух пространственных измерениях. Однако реальные перемещения происходят за некоторый промежуток времени, т.е. с некоторой скоростью. Например, за какое время произошло перемещение на рис. 3.1 из исходного положения в конечное положение: за 12 лет или 12 секунд?

Остальная часть этой главы посвящена измерению скорости перемещений. Аналогично измерению перемещения в пространстве, можно измерять разницу во времени между началом и концом движения, которая обычно выражается следующим образом:

Здесь ​\( t_1 \)​ обозначает конечное время, ​\( t_0 \)​ — начальное время, а их разность — количество времени, необходимого для перемещения, например движения мячика от начального к конечному положению. Когда ученые хотят узнать, насколько быстро происходит это событие, то фактически это значит, что они хотят измерить скорость.

Физика 7: все формулы и определения

«Физика 7: все формулы и определения» — это Справочник по физике в 7 классе, доступный для скачивания в 2-х форматах: КРУПНО (формат PDF, на 3-х страницах) и МЕЛКО (формат JPG, на 1-й странице).

1 файл(ы) 255.55 KB

Физика 7 класс: все формулы и определения МЕЛКО на одной странице

1 файл(ы) 549.72 KB

В пособии «Физика 7: все формулы и определения» представлено 24 формулы
и определения за весь курс Физики 7 класса:

Название формулы (закона, правила) Формулировка закона (правила) Формула
1. Цена деления шкалы прибора

Для определения цены деления (ЦД) шкалы прибора необходимо:
1) из значения верхней границы (ВГ) шкалы вычесть значение нижней границы (НГ) шкалы и результат разделить на количество делений (N);
2) найти разницу между значениями двух соседних числовых меток (А и Б) шкалы и разделить на количество делений между ними (n).

ЦД = (ВГ — НГ) / N

ЦД = (Б — А) / n

2. Скорость

Скорость (ʋ) — физическая величина, численно равна пути (S), пройденного телом за единицу времени (t).

ʋ = S / t
3. Путь

Путь (S) — длина траектории, по которой двигалось тело, численно равен произведению скорости (ʋ) тела на время (t) движения.

S = ʋ*t
4. Время движения

Время движения (t) равно отношению пути (S), пройденного телом, к скорости (ʋ) движения.

t = S / ʋ
5. Средняя скорость

Средняя скорость (ʋср) равна отношению суммы участков пути (S1, S2, S3, …), пройденного телом, к промежутку времени (t1 + t2+ t3+ …), за который этот путь пройден.

ʋср = (S1 + S2 + S3 + …) / (t1 + t2 + t3 + …)
6. Сила тяжести

Сила тяжести — сила (FТ), с которой Земля притягивает к себе тело, равная произведению массы (т) тела на коэффициент пропорциональности (g) — постоянную величину для Земли. (g = 9,8 H/кг)

FТ = m*g
7. Вес

Вес (Р) — сила, с которой тело действует на горизонтальную опору или вертикальный подвес, равная произведению массы (т) тела на коэффициент (g).

Р = m*g
8. Масса

Масса (т) — мера инертности тела, определяемая при его взвешивании как отношение силы тяжести (Р) к коэффициенту (g).

т = Р / g
9. Плотность

Плотность (ρ) — масса единицы объёма вещества, численно равная отношению массы (т) вещества к его объёму (V).

ρ = m / V
10. Момент силы

Момент силы (М) равен произведению силы (F) на сё плечо (l)

М = F*l
11. Условие равновесия рычага

Рычаг находится в равновесии, если плечи (l1, l2) действующих на него двух сил (F1, F2) обратно пропорциональны значениям сил.

a) F1 / F2 = l1 / l2

б) F1*l1 = F2*l2

12. Давление

Давление (р) — величина, численно равная отношению силы (F), действующей перпендикулярно поверхности, к площади (S) этой поверхности

p = F / S
13. Сила давления

Сила давления (F) — сила, действующая перпендикулярно поверхности тела, равная произведению давления (р) на площадь этой поверхности (S)

F = р*S
14. Давление однородной жидкости

Давление жидкости (р) на дно сосуда зависит только от её плотности (ρ) и высоты столба жидкости (h).

p = g ρ h
15.Закон Архимеда

На тело, погруженное в жидкость (или газ), действует выталкивающая сила — архимедова сила (FВ). равная весу жидкости (или газа), в объёме (VТ) этого тела.

FВ = ρ*g*Vт
16. Условие плавания тел

Если архимедова сила (FВ) больше силы тяжести (FТ) тела, то тело всплывает.

FВ> FТ
17. Закон гидравлической машины

Силы (F1, F2), действующие на уравновешенные поршни гидравлической машины, пропорциональны площадям (S1, S2) этих поршней.

F1 / F2 = S1 / S2
18. Закон сообщаю-щихся сосудов

Однородная жидкость в сообщающихся сосудах находится на одном уровне (h)

h = const
19. Механическая работа

Работа (A) — величина, равная произведению перемещения тела (S) на силу (F), под действием которой это перемещение произошло.

А = F*S
20. Коэффициент полезного действия механизма (КПД)

Коэффициент полезного действия (КПД) механизма — число, показывающее, какую часть от всей выполненной работы (АВ) составляет полезная работа (АП).

ɳ = АП / АВ *100%
21. Потенциальная энергия

Потенциальная энергия (ЕП) тела, поднятого над Землей, пропорциональна его массе (т) и высоте (h) над Землей.

ЕП = m*g*h
22. Кинетическая энергия

Кинетическая энергия (ЕК) движущегося тела пропорциональна его массе (m) и квадрату скорости (ʋ2).

ЕК = m*ʋ2 / 2
23. Сохранение и превращение механической энергии

Сумма потенциальной (ЕП) и кинетической (ЕК) энергии в любой момент времени остается постоянной.

EП + EК = const
24. Мощность

Мощность (N) — величина, показывающая скорость выполнения работы и равная:а) отношению работы (А) ко времени (t), за которое она выполнена;б) произведению силы (F), под действием которой перемещается тело, на среднюю скорость (ʋ) его перемещения.

N = A / t

N = F*ʋ

12 (двенадцать) самых необходимых (самых востребованных) формул по физике в 7 классе:

Метры на секунду — единицы измерения скорости в системе СИ

Метр, деленный на секунду ($\frac{м}{с}$) — единицы измерения скорости в системе СИ. Единицы измерения скорости является производной в системе СИ. Одни метр в секунду равен скорости прямолинейного равномерного перемещения материальной точки. При таком движении рассматриваемая точка за 1 секунду перемещается на расстояние равное одному метру.

Для скорости могут использоваться кратные и дольные единицы со стандартными приставками системы СИ (обычно в числителе). Например, $\frac{км}{с}$ — километр в секунду:

Это очень большая скорость, которая используется при изучении и описании перемещений космических тел. К дольным единицам скорости можно отнести, например, $\frac{см}{с}$ — сантиметр в секунду:

Примеры задач с решением

Пример 1

Задание. Стрелу выпустили из лука в вертикальном направлении вверх. Она оказалась на земле через $t=6$ c. Какой была начальная скорость стрелы ($v_0$)? Запишите ответ в километрах в час.

Решение. Сделаем рисунок.

Запишем кинематическое уравнение движения скорости стрелы, рассматривая ее как материальную точку:

\

Для точки максимального подъема стрелы в проекции на ось Y уравнение (1.1) примет вид:

\

Учитывая, что стрела поднимается вверх до точки максимального подъема затрачивая времени ($t_1$) столько же, сколько тратит на то, чтобы опуститься от точки А до земли ($t_2$), то:

\

где $t$ — полное время полета стрелы. Из (1.2) и (1.3), получаем:

\

Проведем вычисления начальной скорости в единицах СИ, зная, что $g=9,8\frac{м}{с^2}\approx 10\frac{м}{с^2}$:

\

Приведём скорость в $\frac{км}{ч}$, используя соотношение:

\

Тогда

\

Ответ. $v_0=108\ \frac{км}{ч}$

Пример 2

Задание. Искусственный спутник Земли движется с постоянной скоростью по круговой орбите на высоте $h=$600 км от поверхности планеты. Какова скорость движения спутника? Масса Земли равна $M_z\approx $5,97 $\cdot {10}^{24}кг$, ее радиус $R_z\approx $6400 км. Ответ выразите в $\frac{км}{с}$.\textit{}

Решение. На спутник действует сила гравитации, в соответствии со вторым законом Ньютона запишем:

\

Так как спутник движется с постоянной по модулю скоростью по окружности, то он имеет только центростремительное ускорение, которое выразим как:

\

Подставим правую часть выражения (2.2) вместо ускорения в (2.1), выразим скорость движения спутника, учитывая, что $R=R_z+$h:

\

Проведем вычисления, учтем, что $\gamma =6,67\cdot {10}^{-11}\frac{м^3}{с^2кг}$:

\

Переведем скорость в $\frac{км}{с}$:

\

Ответ. $v=7,5\cdot {10}^{-3}\frac{км}{с}$

Ускорение свободного падения

Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.

Сила тяжести — сила, с которой Земля притягивает все тела.

Сила тяжести

F = mg

F — сила тяжести

m — масса тела

g — ускорение свободного падения [м/с2]

На планете Земля g = 9,8 м/с2, но подробнее об этом чуть позже.

На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.

Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора

Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.

На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.

Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:

F = mg

F = G * (Mm/R2)

Приравниваем правые части:

mg = G * (Mm/R2)

Делим на массу левую и правую части:

g = G * (M/R2)

Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.

Формула ускорения свободного падения

g = G * (M/R2)

g — ускорение свободного падения [м/с2]

M — масса планеты

R — расстояние между телами

G — гравитационная постоянная

G = 6,67 × 10-11м3·кг-1·с-2

Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.

Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.

Теория к заданию 23 из ЕГЭ по физике

6.1. Основные понятия и законы квантовой физики

Фотоэффектом называется потеря телами электронов под действием света. Существует критическая длина волны (своя для каждого металла), с превышением которой фотоэффект прекращается. Т.к. эта длина волны лежит в длинноволновой области спектра, то её принято называть красной границей фотоэффекта
 Для фотоэффекта Эйнштейн привлёк представление о фотонах (квантах света), предложенное Планком для объяснения теплового излучения тел. Уравнение Эйнштейна для фотоэффекта имеет вид:
Постулаты Бора:
1) электроны движутся в атоме по стационарным орбитам, на которых они обладают энергией, но энергии не излучают
 Таких стационарных орбит в атоме несколько. Нижняя орбита называется основным состоянием атома, остальные — возбуждённым состоянием атома;
2) переходя с одной стационарной орбиты на другую, электрон испускает или поглощает квант электромагнитной энергии, чья энергия пропорциональна частоте:

6.2. Основные понятия и законы ядерной физики

 В 1932 г. советский физик Иваненко и немецкий физик Гейзенберг предложили протонно-нейтронную модель ядра атома. По этой модели ядро атома состоит из двух видов элементарных частиц — протонов и нейтронов. Так как в целом атом электрически нейтрален, то число протонов в ядре равно числу электронов в атомной оболочке. Следовательно, число протонов равно атомному номеру элемента (Z) таблицы Менделеева. Сумму числа протонов Z и числа нейтронов N называют массовым числом и обозначают A.
 Под энергией связи понимают ту энергию, которая необходима для полного расщепления ядра на отдельные нуклоны. Энергию связи атомных ядер можно рассчитать по формуле
 Величину ∆M называют дефектом масс, который определяется по формуле
где mp — масса протона, mn — масса нейтрона.
 Самопроизвольное испускание неких частиц атомами получило название радиоактивность. Было установлено, что радиоактивные элементы испускают три вида излучения. Их назвали α-, β- и γ- лучами.
 Природа α-, β- и γ- лучей различна. γ-лучи — это электромагнитные волны с очень маленькой длиной волны (от 10−8 до 10−11 см). β-лучи — это электроны, движущиеся со скоростями, близкими к скорости света. α-лучи — это поток ядер атомов гелия (дважды ионизированные атомы гелия). α-, β- и γ- лучи испускаются атомами радиоактивных элементов при их превращениях.
 Для α- и β-распада действует правило смещения: при α-распаде ядро теряет положительный заряд 2e, а масса его убывает на 4 атомных единицы. В результате элемент смещается на 2 клетки к началу периодической системы. Если α-распад претерпевает элемент X, то в результате получается элемент Y :
 При β-распаде из ядра вылетает электрон. Он символически изображается -1e, т. к. масса его очень мала. После β-распада элемент смещается на одну клетку к концу таблицы Менделеева:
 При γ-распаде заряд не меняется, масса ядра меняется ничтожно мало.
Число α-распадов
 Число β-распадов

Определение и свойства

Любое изменение скорости тела приводит к ускорению (ᾱ) как в сторону увеличения, что обычно подразумевается, так и снижения, то есть замедления. Также этот термин может означать смену направления (центростремительность). Это связано с прямой зависимостью сил, которые действуют на объект, от изменения скорости (v), являющейся величиной векторной и имеющей направление. Так ускоряться будут:

  • падающее яблоко;
  • автомобиль, останавливающийся на светофоре;
  • вращающаяся планета и т. п.

Например, транспортное средство начинает движение с места и продолжает ехать, увеличивая v, — это ᾱ линейное (или тангенциальное). Пассажиры внутри машины будут ощущать его как силу, которая прижимает их к спинкам сидений. Если автомобиль поворачивает, то есть меняет направление, то это уже ᾱ радиальное. Люди в салоне будут наклоняться в сторону, противоположную движению.

Когда водитель решит остановиться, это тоже будет ускорением, но только в противоположном направлении v движения авто. В космосе такое ᾱ называют ретроградным горением или замедлением. Пассажиры будут чувствовать, будто что-то их толкает вперёд. Принято различать два вида ᾱ:

  1. Среднее. Определяется как изменение скорости (∆v) за какой-либо промежуток времени (∆t). Математическое уравнение выглядит следующим образом: ᾱ = ∆v / ∆t.
  2. Мгновенное. Это предел предыдущего ускорения за интервал t, называемый бесконечно малым. Формула будет такая: ᾱ = lim ∆t → 0 * ∆v / ∆t = dv / dt.

Механическое движение: формулы за 7 класс

Механическое движение — перемещение тела в пространстве, в результате которого оно меняет свое положение относительно других тел. Закономерности такого движения изучают в рамках механики и конкретно ее раздела — кинематики.

Для того, чтобы описать движение, требуется тело отсчета, система координат, а также инструмент для измерения времени. Это составляющие системы отсчета.

Изучение механического движения в курсе по физике за 7 класс включает следующие термины:

  • Перемещение тела — вектор, проведенный из начальной точки в конечную.

  • Траектория движения — мысленная линия, вдоль которой перемещается тело.

  • Путь — длина траектории тела от начальной до конечной точки.

  • Скорость — быстрота перемещения тела или отношение пройденного им пути ко времени прохождения.

  • Ускорение — быстрота изменения скорости, с которой движется тело.

Равномерное прямолинейное движение означает, что тело движется вдоль прямой с одинаковой скоростью. В таком случае перемещение тела и его путь будут равны.

Формула скорости равномерного прямолинейного движения:

V = S / t, где S — путь тела, t — время, за которое этот путь пройден.

Формула скорости равномерного криволинейного движения:

где S1 и S2 — отрезки пути, а t1 и t2 — время, за которое был пройден каждый из них.

Единица измерения скорости в СИ: метр в секунду (м/с).

Формула скорости равноускоренного движения:

V = V + at, где V— начальная скорость, а — ускорение.

Единица измерения ускорения в СИ: м/с2.

Общие сведения

Угловое ускорение тела, движущегося по окружности, определяет насколько изменяется скорость движения этого тела по окружности. Эту скорость также называют угловой скоростью. Когда мы говорим, что тело движется по окружности с ускорением, это может означать, что скорость уменьшается или увеличивается, но ускорение также может быть вызвано изменением направления движения. Движение по окружности характеризуется угловым ускорением, в то время как движение по прямой — линейным.

Оранжевое тело двигается по окружности с угловым ускорением A, которое обозначено розовым цветом. Тангенциальная скорость этого тела — B (темно-синяя). Кроме силы, толкающей тело, на него также действует центростремительная сила C (фиолетовая), которая направлена в центр вращения. Эта сила создает центростремительное ускорение D (голубое), которое также направлено в центр вращения

Угловое ускорение часто путают с центростремительным ускорением, которое вызвано центростремительной силой. Эта путаница происходит из-за того, что и угловое и центростремительное ускорение используют для описания движения по окружности. На рисунке центростремительная сила обозначена фиолетовым цветом (C), а центростремительное ускорение — голубым (D). В отличие от углового ускорения, центростремительное обозначает изменение скорости по касательной. Эту скорость также называют тангенциальной скоростью, то есть мгновенной линейной скоростью тела по касательной к окружности в точке, где тело в это время находится. На рисунке эта скорость обозначена темно-синим цветом (B).

Угловое ускорение параллельно силе, которая вызывает движение по окружности, и перпендикулярно радиусу вращения. На нашем рисунке угловое ускорение обозначено розовым цветом (A). Центростремительное ускорение, напротив, направлено к центру вращения, то есть перпендикулярно направлению движения тела. Из этого следует, что угловое ускорение перпендикулярно центростремительному.

Американские горки

Отличие углового и центростремительного ускорения также в силах, которыми оно ускорение вызвано. Как мы уже говорили, центростремительное ускорение зависит от центростремительной силы. Эта сила всегда направлена к центру вращения, и заставляет тело двигаться по окружности. Классический пример действия этой силы — в американских горках. Именно центростремительная сила не позволяет кабинкам упасть вниз, даже когда они движутся в перевернутом положении по окружности. Угловое ускорение, с другой стороны, вызвано силой, толкающей тело вперед.

Вычисляя угловое ускорение, также необходимо не перепутать его с центростремительным. Чтобы найти центростремительное ускорение, квадрат мгновенной линейной скорости делят на радиус вращения. Под радиусом вращения мы подразумеваем расстояние от тела до центра вращения. Из приведенной выше формулы следует, что чем больше радиус, тем меньше центростремительное ускорение. Угловое ускорение можно найти, поделив момент силы на момент инерции. Здесь под моментом силы мы подразумеваем свойство тел, благодаря которому они начинают вращаться, если к ним приложить силу. Момент инерции — наоборот мера инертности твердых тел при вращательном движении. То есть, зависимость между вращением тела и противодействием этому вращению аналогична подобной зависимости для прямолинейного движения, которая описана во втором законе Ньютона: F = ma, где a — это линейное ускорение, F — это сила, которая вызывает движение по прямой, а m — масса тела, которая как раз и влияет на то, как сильно тело противостоит движению.

Факторы, влияющие на угловое ускорение

Описанная выше зависимость между угловым ускорением, моментом силы и моментом инерции говорит о том, что. изменяя момент силы и момент инерции, мы можем манипулировать ускорением. То есть, чтобы ускорить движение тела нам необходимо увеличить силу, вызывающую движение по окружности, или уменьшить момент инерции, то есть сопротивление этому движению. Какую из этих двух величин изменить — зависит от ситуации, так как иногда проще изменить одну, а иногда — другую. Момент инерции зависит от веса и формы тела. Под формой подразумевается радиус от центра вращения до самой удаленной точки тела. Поэтому в некоторых случаях имеет смысл изменить вес или форму тела, чтобы не тратить дополнительную энергию на увеличение силы. В других случаях, наоборот, изменить форму или вес нет возможности, поэтому более целесообразно увеличить силу.

Равноускоренное движение

Если в течение времени положение тела изменяется относительно предметов, находящихся в покое, то считается, что оно движется. При этом в качестве основного параметра, описывающего перемещение, используется скорость. Движение тела или точки можно представить в виде линии, повторяющей путь прохождения. Называется она траекторией. Если линия прямая, то движение считается прямолинейным.

Неравномерное движение характеризуется перемещением по различной траектории с непостоянной величиной скорости. При этом изменение положения может быть равноускоренным, то есть параметр на одинаковых промежутках увеличивается или уменьшается на одно и то же значение. В качестве примера можно привести падение камня.

Таким образом, если векторы V и ускорения A лежат вдоль прямой, то в проекциях такое направление можно рассматривать как алгебраические величины. При равноускоренном движении по прямой траектории скорость точки вычисляется по формуле: V = V0 + A*t. Где:

  • V0 — начальная скорость;
  • A — ускорение (имеет постоянное значение);
  • t — время движения.

Это основная формула в физике. На графике она изображается как прямая линия v (t). По оси ординат откладывается время, а абсцисс — скорость. Построив график, по наклону прямой можно определить ускорение точки A. Для этого используется формула нахождения сторон треугольника: A = (v-v0) / t.

Если на оси времени выделить промежуток Δt, то можно предположить, что движение будет равномерным и описываться некоторым параметром, равным мгновенному значению в середине отрезка. Эта моментальная величина является векторной. Она численно равна пределу, который пытается достигнуть скорость за промежуток времени, стремящийся к нулю. В физике это состояние описывается формулой мгновенной скорости: V = lim (Δ s/ Δ t) = r-1(t). То есть, с математической точки зрения, это первая производная.

Из этой формулы можно вывести выражение для нахождения конечной скорости материальной точки: V = (V20 — 2* A * s)½. Если же в начальный момент V0 = 0, то формулу можно упростить до вида: V = (2* A * s)½.

«Понадобится ещё много времени»

Опрошенные RT эксперты полагают, что это «успешное», по словам американских военных, испытание гиперзвуковой ракеты не сильно приближает Вашингтон к производству такого оружия.

По мнению директора Центра военно-политических исследований МГИМО Алексея Подберёзкина, до введения этих ракет в строй могут пройти ещё долгие годы.

  • Прототип гиперзвуковой ракеты США
  • Reuters

Как отметил в беседе с RT военный эксперт, старший научный сотрудник НИУ ВШЭ Василий Кашин, несмотря на то, что США реализуют программу HAWC, для подготовки к серийному производству нового гиперзвукового оружия США нужно организовать и успешно провести целый цикл испытаний.

«Это только одна из таких попыток, которая, как сообщает Вашингтон, завершилась успешно. Она равнозначна лишь одному шагу Вашингтона на пути к производству гиперзвукового вооружения», — сказал аналитик.

Эксперты также отмечают, что наряду с такого рода заявлениями Пентагона об успешных испытаниях гиперзвуковых вооружений в ведомстве нередко сообщают и о проблемах в этой сфере. Звучат в Минобороны Соединённых Штатов и многочисленные призывы ускорить работу над гиперзвуковым оружием, отметили аналитики.

Число оборотов

Характеристикой всех видов вращения является число оборотов n или равноценная ей характеристика — частота f. Обе величины характеризуют число оборотов в единицу времени.

Единица СИ частоты (или числа оборотов)

В технике число оборотов обычно измеряется в оборотах в минуту (об/мин) = 1/мин.

Таким образом, величина, обратная числу оборотов, есть продолжительность одного оборота.

Если n — число оборотов, f — частота, T — продолжительность одного оборота, период, ? — угловое перемещение, N — полное число оборотов, t — время, продолжительность вращения, ? — угловая частота, 
то

Угловое перемещение равно произведению полного числа оборотов на 2?:

Угловая скорость

Из формулы для одного оборота следует:

Обратите внимание:• формулы справедливы для всех видов вращательного движения — как для равномерного движения, так и для ускоренного. В них могут входить постоянные величины, средние значения, начальные и конечные значения, а также любые мгновенные значения.• вопреки своему названию число оборотов n — это не число, а физическая величина.• следует различать число оборотов n и полное число оборотов N

Движение по циклоиде*

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле