История открытия каждой планеты в нашей солнечной системе

Другие объекты

В состав Солнечной системы также входят:

  • Карликовые планеты. Они уступают по размерам стандартным. Популярный представитель – Плутон.
  • Пояс Койпера. Объект располагается за границами орбиты Нептуна. Представляет скопление ледяных тел в форме диска. Здесь обнаружены сотни карликовых образований типа Плутона.
  • Облако Оорта. Формирование, наполненное ледяными конгломератами. Оно располагается на расстоянии 100000-200000 а.е. от звезды.
  • Кометы. Космические тела из газа, льда и космической пыли. Приближаясь к Солнцу, они нагреваются и выбрасывают видимый след в виде знаменитого «хвоста».
  • Астероиды. Каменные образования двигаются вокруг солнечного диска между Марсом и Юпитером. Траектории движения малых тел постоянно изменяются за счет гравитационного влияния соседних объектов.
  • Метеоры и метеориты. Космические объекты малых размеров, периодически врывающиеся в атмосферный слой Земли, до момента падения называются метеоритами. В момент попадания в земную атмосферу их переквалифицируют в метеоры. Они сгорают в воздухе до падения, небольшая часть падает на поверхность.

Знакомство с Солнечной системой

Солнечная система является частью спиралевидной галактики — Млечного пути. В самом ее центре находится Солнце – самый большой обитатель Солнечной системы. Солнце – это горячая звезда, состоящая из газов – водорода и гелия. Оно производит огромное количество тепла и энергии, без которых жизнь на нашей планете была бы просто невозможна. Солнечная система возникла пять млрд. лет назад в результате сжатия газопылевого облака.

Млечный путь

Центральное тело нашей планетной системы — Солнце (по астрономической классификации — желтый карлик), сосредоточило в себе 99,866% всей массы Солнечной системы. Оставшиеся 0,134% вещества представлены девятью большими планетами и несколькими десятками их спутников (в настоящее время их открыто более 100), малыми планетами — астероидами (примерно 100 тысяч), кометами (около 1011 объектов), огромным количеством мелких фрагментов — метеороидов и космической пылью. Все эти объекты объединены в общую систему мощной силой притяжения превосходящей массы Солнца.

Планеты земной группы составляют внутреннюю часть Солнечной системы. Планеты-гиганты образуют ее внешнюю часть. Промежуточное положение занимает пояс астероидов, в котором сосредоточена большая часть малых планет.

Фундаментальной особенностью строения Солнечной системы является то, что все планеты обращаются вокруг Солнца в одном направлении, совпадающем с направлением осевого вращения Солнца, и в том же направлении они обращаются вокруг своей оси. Исключение составляют Венера, Уран и Плутон, осевое вращение которых противоположно солнечному. Существует корреляция между массой планеты и скоростью осевого вращения. В качестве примеров достаточно упомянуть Меркурий, сутки которого составляют около 59 земных суток, и Юпитер, который успевает сделать полный оборот вокруг своей оси менее, чем за 10 часов.

Планеты солнечной системы

Сколько существует планет?

Планеты и их спутники:

  1. Меркурий,
  2. Венера,
  3. Земля (спутник Луна),
  4. Марс (спутники Фобос и Деймос),
  5. Юпитер (63 спутника),
  6. Сатурн (49 спутника и кольца),
  7. Уран (27 спутника),
  8. Нептун (13 спутников).
  • Астероиды,
  • Объекты пояса Койпера (Квавар и Иксион),
  • Карликовые планеты (Церера, Плутон, Эрида),
  • Объекты облака Орта (Седна, Оркус),
  • Кометы (комета Галлея),
  • Метеорные тела.

Чем отличается земная группа?

К планетам земной группы традиционно относят Меркурий, Венеру, Землю и Марс (в порядке удаления от Солнца). Орбиты этих четырёх планет расположены до Главного пояса астероидов. Эти планеты объединяют в одну группу также из-за схожести их физических свойств — они имеют небольшие размеры и массы, средняя плотность их в несколько раз превосходит плотность воды, они медленно вращаются вокруг своих осей, у них мало или совсем нет спутников (у Земли — один, у Марса — два, у Меркурия и Венеры — ни одного).

Планеты земного типа или группы отличаются от планет-гигантов меньшими размерами, меньшей массой, большей плотностью, более медленным вращением, гораздо более разрежёнными атмосферами (на Меркурии атмосфера практически отсутствует, поэтому его дневное полушарие сильно накаляется. Температура у планет земной группы значительно выше чем у гигантов (на Венере до плюс 500 С). Элементные составы планет земной группы и планет-гигантов также резко отличаются друг от друга. Юпитер и Сатурн состоят их водорода и гелия примерно в той же пропорции, что и Солнце. У планет земной группы имеется много тяжелых элементов. Земля в основном состоит из железа (35 %), кислорода (29 %) и кремния (15 %). Наиболее распространенные соединения в коре — окислы алюминия и кремния. Таким образом, элементный состав Земли резко отличается от солнечного.

Какие есть планеты-гиганты?

К планетам-гигантам относятся Юпитер, Сатурн, Уран и Нептун. Эти планеты обладают большими размерами, но небольшой плотностью из-за своего газового состава из водорода и гелия. Тем не менее примерно 98 % суммарной массы планет Солнечной системы приходится на массу планет-гигантов!  Тепловой поток из центра Юпитера и Сатурна немного превосходит поток энергии, получаемой планетой от Солнца, тогда как тепловой поток из центра Земли пренебрежимо мал по сравнению с потоком энергии, получаемой Землей от Солнца.Эти планеты удалены на большие расстояния от Солнца, поэтому самые дальние из них — Нептун и Уран, содержат большое количество льда и именуются ледяными гигантами.

Размеры планет солнечной системы

Планеты данного типа обладают большим количеством спутников, в отличие от планет земной группы, и обладают высокой скоростью вращения. Спутниками называются небольшие тела, вращающиеся вокруг планет. Область между планетами наполнена небольшими твердыми частицами и разреженными газами.

Четыре теории происхождения солнечной системы.

Теория Канта-Лапласа о происхождении солнечной системы

Кант-Лаплас

Одной и первых попыток понять причины возникновения Солнечной системы была гипотеза, сформулированная Пьером Лапласом и Иммануилом Кантом (конец XVIII века). Они считали, что предком Солнечной системы была раскалённая газопылевая туманность, которая вращалась вокруг плотного ядра. Под действием гравитации эта туманность сплющивалась у полюсов, после чего превратилась в большой диск. Из-за неоднородной плотности диск расслоился на отдельные кольца из газа. Со временем данные кольца сгущались и превращались в газовые сгустки, вращающиеся вокруг своей оси. После остывания эти сгустки стали планетами, а окружающие их кольца – спутниками. Большая часть туманности, оставшаяся в центре и имеющая достаточную плотность для образования звезды, стала Солнцем. В XIX веке были получены некоторые новые результаты в астрономии, которые противоречили данной гипотезе. Несмотря на то, что гипотеза Канта-Лапласа была признана недостаточной, её ценность до сих пор велика.

Теория О. Ю. Шмидта о происхождении солнечной системы

Советский геофизик и астроном Отто Юльевич Шмидт, работающий в первой половине XX века, по-другому представлял себе процесс образования Солнечной системы. Согласно его теории, Солнце, блуждая по галактике, прошло сквозь газопылевое облако, захватив с собой его часть. Далее твёрдые частицы облака стали слипаться и образовывать холодные планеты. Повышение температуры на этих планетах произошло позже из-за сжатия и поступления солнечной энергии. В процессе нагревания Земли происходили массовые извержения вулканов на её поверхности, что поспособствовало формированию первых земных покровов. Газы, выделяющиеся при этом из лавы, образовали первую атмосферу, которая пока была лишена кислорода. Атмосфера того времени содержала более 50 % водяного пара, разогретого более чем на 100 °C. В процессе дальнейшего остывания водяной пар конденсировался, образовав тем самым первичные океаны. Считается, что это произошло примерно 4,5-5 млрд лет назад. Позже началось образование суши – литосферных плит, возвышающихся над уровнем океана.

Теория Ж. Бюффона о происхождении солнечной системы

Не все учёные поддерживали эволюционные концепции происхождения планет. В XVIII веке Жорж Бюффон, французский естествоиспытатель, поддержал и развил гипотезу, представленную американскими физиками Мультоном и Чемберленом. Заключалась она в следующем: в определённый момент в окрестности Солнца пронеслась некая другая звезда. Сила гравитации от той звезды вызвала выплеск материи с поверхности Солнца; эта волна вытянулась на десятки и сотни миллионов километров. После этого оторвавшаяся солнечная материя охладилась и образовала сгустки вещества, вращающегося вокруг Солнца. Каждый сгусток впоследствии сформировал свою планету.

Теория Ф. Хойла о происхождении солнечной системы

В XX веке была предложена новая гипотеза. Её автором стал английский астрофизик Фред Хойл. Согласно данной гипотезе Солнце имело звезду-близнеца. По стечению обстоятельств произошёл взрыв той звезды, который выбросил небольшую часть осколков на орбиту Солнца. Эти осколки, по предположению Хойла, образовали современные планеты.

Кто открыл Юпитер

Фотография Юпитера сделанная космическим аппаратом «Вояджер-1»

Крупнейшую планету нашей Солнечной системе, Юпитер, наблюдают с самых древних времен. Она помогала китайцам вести 12-летний цикл, и ее назвали в честь царя римских богов. Также она была целью многих астрономов. Галилей первым наблюдал четыре главных спутника Юпитера, теперь известные как галилеевы луны: Ио, Европа, Ганимед и Каллисто, названные в честь любовников Зевса. Астроном Роберт Гук обнаружил крупную систему бурь на газовом гиганте, а в 1665 году это подтвердил Джованни Кассини, параллельно впервые заметив Большое Красное Пятно, которое формально было обнаружено в 1831 году. Не имея под собой твердой почвы, бури на Юпитере бушуют как только могут. Астрономы Джованни Борелли и Кассини, используя орбитальные таблицы и математику, обнаружили нечто странное: будучи в оппозиции к Земле, Юпитер на семнадцать минут опаздывает относительно расчетов, что говорит о том, что свет не является мгновенным явлением, а имеет задержку.

В 1900-х годах наблюдения привели к другим открытиям: используя радиотелескоп для изучения Крабовидной туманности с 1954 по 1955 год, астроном Бернард Берке обнаружил помехи с одной части неба и в конце концов выяснил, что Юпитер излучает волны вместе с излучением планеты. В 1973 году миссии «Пионера» стали первыми зондами, пролетевшими мимо планеты и сделавшими ряд близких снимков. В 1977 году с Земли были запущены две миссии зондов «Вояджер-1» и «Вояджер-2», предназначенные для изучения внешних планет Солнечной системы. Первый из них достиг Юпитера двумя годами позже: «Вояджер-1» прибыл в марте 1979 года, а «Вояджер-2» — в июле 1979 года. Оба обнаружили много полезной информации о планете и ее спутниках, прежде чем отправиться дальше, нашли небольшую систему колец и дополнительные спутники. В 1992 году к Юпитеру прибыла миссия «Улисс»; в 1995 году на орбиту планеты вышли зонды «Галилей»; «Кассини» пролетел в 2000 году, а «Новые горизонты» — в 2007. В 1994 году ученые также наблюдали нечто невероятное: в южный горизонт Юпитера врезалась планета Шумейкера-Леви, оставив огромный шрам в атмосфере планеты. В настоящее время предпринимаются попытки изучать спутники Юпитера, некоторые из которых могут быть прекрасными кандидатами для жизни.

Порядок планет

Планеты по порядку: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун

Планеты по порядку, начиная с ближайшего к нашему царю, следующий: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун. Первые четыре считаются планетами земной группы, поскольку состоят в основном из рока и металла. Хотя последние четыре называются планетами-гигантами, они состоят из газа и называются «газовыми гигантами».

Хотя стоит также упомянуть, что наступил момент, когда исследователи начали открывать так много космических объектов, что научному сообществу пришлось сесть, чтобы обсудить, каким характеристикам они должны соответствовать, чтобы считаться планетой. С тех пор ведутся дискуссии о том, действительно ли Плутон, последняя открытая планета, может носить титул планеты. Наконец, в 2006 году Международный астрономический союз решил исключить ее из списка планет, и она была признана карликовой планетой.

Слайды презентации

Слайд 1

КОСМОСМИЧЕСКОЕ ПУТЕШЕСТВИЕ КОТА В САПОГАХ

Слайд 2

ПОЧЕМУ Я ВЫБРАЛ ЭТУ ТЕМУ?

1.Я много читал про космос. 2.Мне хочется больше узнать о Солнечной системе. 3.Мне очень нравится смотреть научные фильмы о космосе. 4.Я хочу проверить свои гипотезы.

Слайд 3

Мои гипотезы

1. Предположим, что на планетах Солнечной системы есть жизнь? 2. Что нашей планете Земля уже более 1 миллиона лет. 3. Что на Марсе действует вулкан, который извергает огненную лаву, поэтому Марс красный. 4. Что у Сатурна кольца сделаны из золота.

Слайд 4

Цели и задачи

1. Выяснить, есть ли жизнь на планетах Солнечной системы. 2. Сколько лет нашей планете Земля? 3. Из чего сделаны кольца у планеты Сатурн? 4. Установить, чем похожи планеты Сатурн и Юпитер, и чем отличается?.

Слайд 5

План

1. Прочитать научную литературу о космосе. 2. Посмотреть мультфильмы и научные фильмы о космосе. 3. Изучить данные энциклопедии. 4. Прочитать легенды о планетах. 5. Провести анкетирование для детей и взрослых. 6. Просмотреть информацию по данной теме в Интернете.

Слайд 6

Космос (греч. κόσμος, «упорядоченное», «красивое») — строение, мир, вселенная, мироздание, материальный мир:

Слайд 7

Солнечная система

Миллионы лет вселенная была одним громадным водородным облаком, возникшим в результате большого взрыва.

Слайд 8

Газ и пыль образуют микроскопические сгустки, они увеличиваются и начинают слипаться, сгустки становятся все больше и больше.

Слайд 9

В самом центре огромное облако из газа и пыли обретает форму, вращающийся шар втягивает в себя все вокруг, он становится все больше, все горячей. Затем происходит взрыв.

Слайд 10

Рождается новая звезда – наше СОЛНЦЕ

Слайд 11

Когда произошел взрыв, оставшийся газ и пыль разбрасывается вокруг и образовывает планеты.

Слайд 12

Планеты продолжают расти еще много миллионов лет, и затем начинают обретать современный вид.

Слайд 13

Меркурий

Самая близкая к Солнцу планета Солнечной системы, обращающаяся вокруг Солнца за 88 дней. Самая маленькая планета Солнечной системы.

Слайд 14

Венера

Вторая планета Солнечной системы. Планета получила своё название в честь Венеры, богини любви из римского пантеона. Венера — третий по яркости объект на небе Земли после Солнца и Луны

Слайд 15

Земля

Земля́ — третья от Солнца планета Солнечной системы. Единственное известное на данный момент тело Солнечной системы в частности и Вселенной вообще, населённое живыми существами.

Слайд 16

ЛУНА

Луна́ — единственный естественный спутник Земли. Это второй по яркости объект на земном небосводе после Солнца и пятый по величине естественный спутник планет Солнечной системы.

Слайд 17

Марс

Марс — четвёртая по удалённости от Солнца и седьмая по размерам планета Солнечной системы.

Слайд 18

Юпитер

Юпитер — пятая планета от Солнца, и крупнейшая в Солнечной системе. Наряду с Сатурном, Ураном и Нептуном, Юпитер классифицируется как газовый гигант.

Слайд 19

Сатурн

Сатурн —вторая по размерам планета в Солнечной системе после Юпитера. Сатурн, а также Юпитер, Уран и Нептун, классифицируются как газовые гиганты.

Слайд 20

Уран

Планета образованная газом. Уран так же как и Сатурн имеет кольца, которые слабо видны.

Слайд 21

Нептун

Нептун — восьмая планета от Солнца, большая планета Солнечной системы, относится к планетам — гигантам. Ее орбита пересекается с орбитой Плутона в некоторых местах.

Слайд 22

ПЛУТОН

Плутон – карликовая планета. Первоначально Плутон классифицировался как планета, однако сейчас он считается одним из крупнейших объектов (но не самым крупным) в поясе Койпера.

Слайд 23

Возникновение жизни на планете Земля

Со временем появились вода и атмосфера на планете Земля, но не хватало одного – жизни. Вероятно она зародилась в океане. Но есть и другая теория. Жизнь зародилась в космосе.

Слайд 24

Бактерии и вирусы попали на Землю с кометой. Они выжили во время путешествия через космос. Столкнувшись с Землей они распространились по всему Земному шару.

Слайд 25

Земля единственная планета нашей солнечной системы, где есть Жизнь. Мы уже знаем, что мы не одиноки, мы делим планету с 10 миллионами других живых существ.

Слайд 26

Планета земля – Жизнь!!! Берегите нашу планету!!!

Внутренняя Солнечная система

Это линия с первыми 4-мя планетами от звезды. Все они обладают похожими параметрами. Это скалистый тип, представленный силикатами и металлами. Расположены ближе, чем гиганты. Уступают по плотности и размерам, а также лишены огромных лунных семейств и колец.

Силикаты формируют кору и мантию, а металлы являются частью ядер. Все, кроме Меркурия, располагают атмосферным слоем, который позволяет формировать погодные условия. На поверхности заметны ударные кратеры и тектоническая активность.

Ближе всех к звезде находится Меркурий. Это также наиболее крошечная планета. Магнитное поле достигает всего 1% от земного, а тонкая атмосфера приводит к тому, что планета наполовину раскалена (430°C) и замерзает (-187°C).

Современный вид Марса

Венера сходится по размеру с Землей и обладает плотным атмосферным слоем. Но атмосфера крайне токсична и работает в качестве парника. На 96% состоит из углекислого газа, вместе с азотом и прочими примесями. Плотные облака созданы из серной кислоты. На поверхности много каньонов, наиболее глубокий из которых достигает 6400 км.

Земля изучена лучше всего, потому что это наш дом. Обладает скалистой поверхностью, укрытой горами и углублениями. В центре находится тяжелое ядро из металла. В атмосфере присутствует водяной пар, что сглаживает температурный режим. Рядом вращается Луна.

Из-за внешнего вида Марс получил кличку Красная планета. Окрас создается окислением железных материалов на верхнем слое. Наделен самой крупной горой в системе (Олимп), возвышающейся на 21229 м, а также глубочайшим каньоном – Долина Маринер (4000 км). Большая часть поверхности древняя. На полюсах есть ледяные шапки. Тонкий атмосферный слой намекает на водные залежи. Ядро твердое, а рядом с планетой присутствует два спутника: Фобос и Деймос.

Как появилась Солнечная система, и как она развивалась

Солнечная система образовалась 4,568 миллиарда лет назад в процессе гравитационного коллапса региона в гигантском молекулярном облаке из водорода, гелия и небольших количеств элементов потяжелее, синтезированных предыдущими поколениями звезд. Когда этот регион, который должен был стать Солнечной системой, коллапсировал, сохранение углового момента заставило его вращаться быстрее.

Центр, где собралась большая часть массы, начал становиться все горячее и горячее окружающего диска. По мере того как сжимающаяся туманность вращалась быстрее, она начала выравниваться в протопланетарный диск с горячей, плотной протозвездой в центре. Планеты образовались аккрецией этого диска, в котором пыль и газ стягивались вместе и объединялись, чтобы сформировать более крупные тела.

Из-за более высокой температуры кипения, только металлы и силикаты могут существовать в твердой форме близко к Солнцу и в конечном итоге образуют планеты земной группы — Меркурий, Венеру, Землю и Марс. Поскольку металлические элементы были лишь небольшой частью солнечной туманности, планеты земной группы не смогли стать очень большими.

В отличие от этого, планеты-гиганты (Юпитер, Сатурн, Уран и Нептун) образовались за точкой между орбитами Марса и Юпитера, где материалы были достаточно холодными, чтобы летучие ледовитые компоненты оставались твердыми (на снеговой линии).

Льды, которые сформировали эти планеты, были более многочисленны, чем металлы и силикаты, которые сформировали внутренние планеты земной группы, что позволило им расти достаточно массивными, чтобы захватить крупные атмосферы из водорода и гелия. Оставшийся мусор, который никогда не станет планетами, собрался в регионах вроде пояса астероида, пояса Койпера и облака Оорта.

За 50 миллионов лет давление и плотность водорода в центре протозвезды стали достаточно высокими, чтобы начался термоядерный синтез. Температура, скорость реакции, давление и плотность увеличивались, пока не было достигнуто гидростатическое равновесие.

В этот момент Солнце стало звездой главной последовательности. Солнечный ветер от Солнца создал гелиосферу и смел оставшиеся газ и пыль протопланетарного диска в межзвездное пространство, заканчивая процесс формирования планет.

Солнечная система будет оставаться практически такой же, какой мы ее знаем, пока водород в ядре Солнца не будет полностью преобразован в гелий. Это произойдет примерно через 5 миллиардов лет и ознаменует конец главной последовательности жизни Солнца. В это время ядро Солнца коллапсирует и выход энергии будет значительно больше, чем сейчас.

Наружные слои Солнца расширятся примерно в 260 раз шире текущего диаметра, и Солнце станет красным гигантом. Расширение Солнца, как ожидается, испарит Меркурий и Венеру и сделает Землю непригодной для жизни, поскольку обитаемая зона выйдет за орбиту Марса. В конце концов, ядро станет достаточно горячим, чтобы начался гелиевый синтез, Солнце еще немного пожжет гелий, но потом ядро станет сокращаться.

В этот момент внешние слои Солнца направятся в космос, оставив позади белый карлик — чрезвычайно плотный объект, который будет иметь половину изначальной массы Солнца, но по размерам будет с Землю. Выброшенные внешние слои сформируют планетарную туманность, вернув часть материала, сформировавшего Солнце, в межзвездное пространство.

Обнаружение Солнечной системы

Фактические нужно посмотреть в небо, и вы увидите нашу систему. Но немногие народы и культуры понимали, где именно мы существуем и какое место занимаем в пространстве. Долгое время мы думали, что наша планета статична, расположена в центре, а остальные объекты выполняют обороты вокруг нее.

Но все же еще в древние времена появлялись сторонники гелиоцентризма, чьи идеи вдохновят Николая Коперника на создание истинной модели, где в центре располагалось Солнце.

Галилей часто использовал свой телескоп, чтобы показать людям небесные объекты

В 17-м веке Галилей, Кеплер и Ньютон сумели доказать, что планета Земля вращается вокруг звезды Солнце. Обнаружение гравитации помогло понять, что и другие планеты следуют по единым законам физики.

Революционный момент настал с появлением первого телескопа от Галилео Галилея. В 1610-м году он заметил Юпитер и его спутники. За этим последуют обнаружения остальных планет.

В 19-м веке провели три важных наблюдения, которые помогли вычислить истинную природу системы и ее позицию в пространстве. В 1839 году Фридрих Бессель удачно определил кажущийся сдвиг в звездной позиции. Это показало, что между Солнцем и звездами лежит огромная дистанция.

В 1859 году Г. Кирхгоф и Р. Бунсен использовали телескоп для проведения спектрального анализа Солнца. Оказалось, что оно состоит из тех же элементов, что и Земля. Эффект параллакса просматривается на нижнем рисунке.

Параллакс помогает наблюдать за объектом на противоположных концах земной орбиты, чтобы вычислить точную удаленность

В итоге, Анджело Секки сумел сопоставить спектральную подпись Солнца со спектрами других звезд. Выяснилось, что они практически сходятся. Персиваль Лоуэлл внимательно изучал отдаленные уголки и орбитальные пути планет. Он догадался, что есть еще нераскрытый объект – Планета Х. В 1930-м году в его обсерватории Клайд Томбо замечает Плутон.

В 1992 году ученые расширяют границы системы, обнаружив транс-нептунианский объект – 1992 QB1. С этого момента начинается заинтересованность поясом Койпера. Далее следуют нахождения Эриды и прочих объектов от команды Майкла Брауна. Все это приведет к собранию МАС и смещению Плутона со статуса планеты. Ниже вы сможете детально изучить состав Солнечной системы, рассмотрев все солнечные планеты по порядку, главную звезду Солнце, пояс астероидов между Марсом и Юпитером, пояс Койпера и Облако Оорта. В Солнечной системе также скрывается самая большая планета (Юпитер) и самая маленькая (Меркурий).

Небулярная гипотеза образования Солнечной системы

По сути, Солнечная система появилась с огромнейшего скопления молекулярного газа и пыли. Но 4.57 миллиардов лет назад случилось непредвиденное событие, заставившее его рухнуть. Это могла быть ударная волна от сверхновой или же гравитационный коллапс в самом облаке.

После этого некоторые участки начали сгущаться, образуя более плотные регионы. Они втягивали еще больше материи и начинали вращаться, а из-за роста давления еще и нагревались. Большая часть материала накапливалась в центре, а остатки расплющивались на диске. Центральный шар стал Солнцем, а все остальное – протопланетный диск.

Пыль и газ на диске продолжали сливаться, пока не образовывали крупные тела – планеты. Расположенные ближе к Солнцу собирали металлы и силикаты (Меркурий, Венера, Земля и Марс). Но металлические элементы были представлены в небольшом количестве, поэтому перечисленные планеты выросли до малых размеров.

Между Марсом и Юпитером появились планеты-гиганты, потому что расположенный на такой удаленности материал был достаточно холодным, чтобы летучие ледяные соединения оставались твердыми. Ледышки доминировали, поэтому они смогли набрать массивности и захватить больше водорода и гелия. Оставшийся мусор перебрался в пояс Койпера и облако Оорта.

Художественная интерпретация ранней Солнечной системы, где столкновение между частичками в аккреционном диске привело к формированию планет

За 50 миллионов лет уровень плотности и давление водорода так выросли, что позволили активировать термоядерный синтез. Температурные показатели, давление, и скорость росли, чтобы обеспечить гидростатическое давление. Солнечный ветер сформировал гелиосферу и сдул пылевые и газовые остатки с протопланетного диска, завершив процесс.

Будущее Cолнечной системы

По последним научным данным, Солнечная система является стабильной системой. То есть больших изменений в ближайшее время не стоит ждать. Самые большие изменения будут происходить с изменением состояния Солнца.

Другими словами,  не будет претерпевать экстремальных изменений до тех пор, пока Солнце не израсходует запасы водородного топлива. Этот рубеж положит начало переходу Солнца в фазу красного гиганта.

Спустя 1 миллиард лет из-за увеличения солнечного излучения околозвёздная обитаемая зона Солнечной системы будет смещена за пределы современной земной орбиты.

В настоящее время

Солнечная система и ее происхождение изучаются во многих известных институтах мира.

Проходящие ежегодно международные конгрессы включают в программу обязательное обсуждение этого вопроса, а в дискуссиях уже неоднократно принимали участие ведущие российские специалисты из Геофизического института при Академии наук

Углубленным исследованиям по теме «Солнечная система и ее происхождение» отводится важное место, а средства для их проведения выделяются из государственного бюджета

Наступит момент, и благодаря неустанным трудам ученых завеса тайны приоткроется, чтобы население Земли смогло узнать еще больше о происхождении нашей удивительной планеты.

Источники

  • https://www.factruz.ru/space_mistery/origin-solar-system.htmhttps://cosmosplanet.ru/solnechnayasistema/proishozhdenie-evolyutsiya-solnechnoj-sistemy.htmlhttps://ru.wikipedia.org/wiki/Формирование_и_эволюция_Солнечной_системыhttps://studopedia.ru/5_57769_proishozhdenie-solnechnoy-sistemi.htmlhttps://fb.ru/article/38099/proishojdenie-solnechnoy-sistemyihttps://spaceworlds.ru/solnechnaya-sistema/rozhdenie.html

Гипотеза Шмидта

В 1944 г. советский ученый Отто Шмидт предположил, что Земля и другие планеты Солнечной системы возникли после того, как рядом с нашей звездой пролетело метеоритное облако. Солнце захватило его своей силой притяжения, после чего одна часть материала облака упала на поверхность светила, а другая часть образовала планеты. Недостаток этой теории заключается в том, что вероятность образования планет вокруг звезд оказывается слишком низкой. В последнее же время было обнаружено огромное количество экзопланет, то есть планет за пределами Солнечной системы. Поэтому процесс формирования планет должен объясняться более вероятным событием.

Развитие представлений о происхождении Солнечной системы

К настоящему времени известны многие гипотезы о происхождении Солнечной системы, в том числе предложенные независимо немецким философом И. Кантом и французским математиком и физиком П. Лапласом:

Точка зрения И. Канта заключалась в эволюционном развитии холодной пылевой туманности, входе которого сначала возникло центральное массивное тело – Солнце, а потом родились и планеты.
П. Лаплас считал первоначальную туманность газовой и очень горячей, находящейся в состоянии быстрого вращения. Сжимаясь под действием силы всемирного тяготения, туманность вследствие закона сохранения момента импульса вращалась все быстрее и быстрее. Под действием больших центробежных сил от него последовательно отделялись кольца, превращаясь в результате охлаждения и конденсации в планеты.

Несмотря на такое различие между двумя рассматриваемыми гипотезами, обе они исходят от одной идеи – Солнечная система возникла в результате закономерного развития туманности. И поэтому такую идею иногда называют гипотезой Канта–Лапласа.

Английский астроном Хойл утверждает, что Солнце в момент рождения представляло собой сгусток газопылевой туманности, в котором существовало магнитное поле. Вначале он вращался с большой скоростью, а позже из-за влияния магнитного поля его вращение начало снижаться.

Гипотеза Джинса – формирование системы произошло в результате катастрофы. Солнце столкнулось с другой звездой, в результате часть выброшенного в космическое пространство вещества конденсировалось и образовало планеты.

Согласно современным представлениям, планеты солнечной системы образовались из холодного газопылевого облака, окружавшего Солнце миллиарды лет назад. Такая точка зрения наиболее последовательно отражена в гипотезе российского ученого, академика О.Ю. Шмидта.

Изучение астероидов

Изучение астероидов является значимой частью современных исследований Солнечной системы. Анализируя состав и строение этих объектов можно изучить прошлое нашей системы, а также других уголков галактики. Кроме того, астероиды гипотетически могут стать сырьевой базой для Земли. Ведь они богаты различными минералами и другими полезными ископаемыми.

Японская межпланетная станция Хаябуса-2 была запущена 3 декабря 2014 года. Ее целью является изучение околоземного астероида (162173) Рюгу. На данный момент зонд уже достиг поверхности небесного тела и проводит изучение его грунта. Возвращение Хаябуса-2 на Землю планируется в 2020 году.