Самые близкие планеты к солнцу: меркурий, венера и другие

1 место. Марс

Именно Марс претендует на планету, которую человек колонизирует первой. Красная планета подходит для создания жизнепригодных для человека условий, по словам учёных, на сегодняшний день в наибольшей степени.

Земля и Марс сегодня

Неоспоримым преимуществом Марса является возможность производства пищевых ресурсов, кислорода и стройматериалов на месте. Это неоспоримый плюс перед другими вариантами планет Солнечной системы. Всё это позволит осуществить задачу терраформирования, что в конечном итоге позволит создать земные условия. Человеку будет гораздо проще привыкнуть к марсианским суткам, которые составляют 24 часа и 39 минут. Животные и растения тоже будут в восторге.

На Марсе точно есть вода. Это подтверждают последние исследования ребят из НАСА. А вода – это жизнь! Она, правда, в замороженном состоянии, но есть предположение, что на Марсе обширные подземные запасы. Тамошняя почва при дополнительной обработке пригодна к выращиванию земных растений.

Красная планета серьёзно рассматривается как место для создания «Колыбели человечества» на случай, если на нашей планете произойдёт глобальная катастрофа. Правда пока это далёкая перспектива, а сейчас на красную планету смотрят скорее как на место, где возможно проводить интересные исследования и эксперименты, которые на Земле проводить опасно.

Среди главных проблем, которые нужно решать, выделяют слабое магнитное поле Марса, разряженную атмосферу и гравитацию, равную 38% от земной.

Для защиты от радиации нужно создать нормальное магнитное поле, что при нынешнем развитии нашей науки пока нереально. С текущей атмосферой тоже придётся что-то решать, т.к. она не удерживает ни тепло, ни воздух. Среднесуточная температура на Марсе -55 °C. К тому же атмосфера красной планеты не обеспечивает должную защиту от метеоритов. Так что, пока не решится проблема с оптимальной атмосферой, придется жить в специальных жилых помещениях. Фактор более низкой гравитации подвергнет организм человека большим испытаниям – ему придётся перестраиваться. Ещё одной неприятностью на Марсе являются его знаменитые песчаные бури, которые сегодня очень плохо изучены. Однако уже рассматриваться разные методы решения этих проблем, когда организация жизни на многих других планетах пока выглядит как фантастика.

Марсианская база с жилыми модулями и теплицей

Сегодня исследованиям Марса препятствует дороговизна полётов. Конечно, ведь правительства всех стран считают, что лучше тратить миллиарды на вооружение, чем на покорение других миров… Так что будем надеяться, что мы успеем организовать на Марсе хотя бы города со своей атмосферой до того, как окончательно загадим Землю.

Полёт на Марс занимает около 9 месяцев, но в обозримом будущем намечаются разработки новых двигателей, которые значительно смогут сократить этого время. Если сравнивать с полётом к Меркурию, то энергозатраты просто мизерные, не говоря уже о сравнении с межзвёздными перелётами.

В общем, Марс оптимальный вариант в плане соотношения пригодности для жизни и расстояния от Земли.

CoRoT-7b

Сложно представить, что всеми нам привычный снег, может отличаться настолько сильно плотной структурой, что не каждая горная порода может с ним сравнится. Планета-экзотик CoRoT-7b относится к категории объектов, на которых наблюдается эффект, более известный в науке как приливной захват. Другими словами, планета постоянно обращена к своей звезде одной из сторон.

По характеристикам, объект просто не поддается нормальному объяснению, все выглядит, мягко выражаясь, уж слишком фантастически. Одна из сторон, та, которая постоянно освещается звездой, настолько горяча (+2 200 С), что все каменно-горные породы находятся в полужидком состоянии. Постоянно плавящаяся лава создает эффект испарения, как это обычно бывает при кипении любой жидкости. А теперь, самое интересное: частицы пара, под воздействием ветровых потоков переносятся на другую часть планеты, точнее, на ту, которая постоянно находится без освещения и потому практически не прогреваемую. Средняя температура этой стороны колеблется в районе -220 С. Переносимые с горячей стороны пары быстро поддаются охлаждению и, превращаясь в каменные частицы, оседают на поверхность планеты в виде осадков. Вот такой вот интересный вид снега встречается в глубинах Вселенной.

Похожие рейтинги:

Танцы Солнца

Представьте, что Вы проснулись утром в первом космическом отеле на Меркурии. Налили чашечку кофе, и подошли к панарамному окну, чтобы насладиться восходом Солнца. Вы видите, как оно медленно поднимается над горизонтом. И вдруг, словно что-то забыв там, в глубине, останавливается. И начинает снова опускаться за горизонт, как бы говоря — все. Кина не будет! И скрывается за горизонтом. Однако, через некоторое время, снова всплывает над ним, и продолжает все быстрее и быстрее подниматься вверх. Достигнув максимально высокой точки на небосводе, Солнце (диск которого, кстати, здесь выглядит в 3 раза больше, чем на Земле) начинает все медленнее и медленнее садиться. И снова скрывается над горизонтом. Вроде бы все, да? Началась ночь. Но нет. Через некоторое время наша звезда снова восходит (я туут), поднимается немного в небо, и снова садится. Все. Вот теперь наступает ночь.

Однако ни один человек до сих пор не наблюдал описанный процесс своими глазами. Ни один космонавт не гулял по поверхности Меркурия. Однако два космических аппарата все же побывали в тех краях. Это АМС «Маринер-10», изучавшая планету в 1974-1975 годах, и АМС «Мессенджер», которая прибыла на орбиту Меркурия в 2011 году, и проработала на ней до 2015 года.  Третий зонд, «Бепи Коломбо», запущенный в 2018 году, должен оказаться на орбите вокруг Меркурия в 2025 году.

Меркурий — очень сложная для астрономов планета. Из-за ее близости к Солнцу. Даже космический телескоп Хаббл не может изучать Меркурий напрямую. Чтобы увидеть планету, астрономы имеют очень маленькое временное окно, которое возникает во время восхода или заката Солнца. Такое непростое положение и небольшие размеры ответственны за то, что Меркурий — наименее изученная планета Солнечной системы. Мы очень мало о ней знаем. Лишь одно для ученых очевидно — она не очень подходит для поддержания жизни. По крайней мере, той жизни, которую мы знаем.

Дождь из стекла

Это планета обладает очень неординарными свойствами. Она находится в 63 световых годах от Земли и на ней идет дождь. Кажется, что удивительного. Но осадки выпадают в виде стекла и не прямо, как мы привыкли, а в сторону. Это происходит из-за сильного ветра на планете HD 189733 b, он просто сносит их в сторону. Знаете скорость ветра? 8700 км/час! Представить это сложно и не нужно. Не дай бог попасть под такой ураган и град! Своеобразные осадки свойственны планете, потому что ее атмосфера насыщена диоксидом кремния, и, когда идет «дождь», условные капли расплавляются при падении и затвердевают.

Даже у самых маленьких тел в Солнечной системе есть спутники

Когда-то считалось, что только такие крупные объекты, как планеты могут иметь естественные спутники или луны. Факт существования спутников иногда даже используется для того, чтобы определить, что на самом деле представляет собой планета. Кажется нелогичным, что маленькие космические тела могут обладать достаточной гравитацией, чтобы удерживать спутник. В конце концов, у Меркурия и Венеры их нет, а у Марса только два крошечных спутника.

Но в 1993 году межпланетная станция Галилео обнаружила у астероида Ида спутник Дактиль шириной всего 1,6 км. С тех пор было найдены спутники, обращающиеся вокруг примерно 200 других мелких планет

, что значительно осложнило определение «планеты».

«Звезды -двойники»

Астрономы из Великобритании разработали очень простую и остроумную методику для измерения расстояний между звездами и Землей, позволяющую определять дистанцию до нашей планеты для любой звезды Млечного Пути при помощи ее «двойника», обладающего идентичными размерами и спектром.

Британские астрономы создали новую методику измерения расстояний в космосе, которая позволяет очень точно вычислять дистанцию от Земли до далеких от нас звезды при помощи ее «двойника», обладающего идентичными размерами и спектром, говорится в статье, опубликованной в журнале Monthly Notices of the Royal Astronomical Society.

«Наша идея очень проста, удивительно, что до нее никто не додумался раньше. Чем дальше от нас расположена звезда, тем более тусклой она будет нам казаться на ночном небе. Если эта звезда и какое-то другое светило обладают абсолютно идентичным спектром, то тогда мы можем использовать разницу в яркости между ними для вычисления расстояния до одной из них, зная дистанцию до другой звезды», – объясняет Джофре Пфайль (Jofre Pfeil) из Кембриджского университета.

Как объясняют Пфайль и его коллеги, сегодня астрономы вычисляют расстояние до далеких от нас светил при помощи так называемого параллакса – того, насколько интересующая их звезда смещается относительно расположенных за ней объектов по мере того, как Земля вращается вокруг Солнца и движется по орбите.

Подобная методика очень точна, однако она работает только для относительно близких к нам светил, расположенных на расстоянии примерно в 1-2 тысячи световых лет от Земли. По этой причине астрономы знают точное расстояние только для 100 тысяч из 100 миллиардов звезд Млечного Пути.

Измерение расстояний до более далеких светил возможно, однако все существующие методики, по мнению Пфайля, опираются на различные статистические модели и допущения о температуре звезды или ее химическом составе, что может вносить существенные искажения в замеры.

Пытаясь уменьшить эти возможные погрешности и разбросы в значениях, группа Пфайля натолкнулась на революционную и при этом простую идею – находить спектральных  «двойников» звезд из числа тех, параллакс которых был точно измерен, и измерять расстояние до них по разнице в их яркости.

Ученые проверили работоспособность своей методики на 175 парах светил с идентичным спектром, одно из которых было расположено на большом расстоянии от Земли, а второе – в пределах 1-2 тысяч световых лет. Вычисленные расстояния до более далеких «двойников» почти полностью совпали с результатами других методик, что подтвердило возможность использования этой техники для определения дистанций до далеких светил.

В ближайшее время Пфайль и его коллеги планируют составить каталог пар звезд-двойников, а также попытаются вычислить точные размеры Галактики, от одного ее края и до противоположной стороны.

Видео

Источники

  • https://ria.ru/science/20090313/164726855.htmlhttps://thealphacentauri.net/how-far-that-star-is/http://spacegid.com/rasstoyaniya-v-kosmose.htmlhttps://сезоны-года.рф/световой%20год.htmlhttp://galspace.spb.ru/indvop.file/48.htmlhttps://ria.ru/science/20150906/1229632478.html

Астрофизические параметры Млечного Пути

Для того чтобы представить, как выглядит Млечный Путь в масштабах космоса, достаточно взглянуть на саму Вселенную и сравнить отдельные ее части. Наша галактика входит в подгруппу, которая в свою очередь является частью Местной группы, более крупного образования. Здесь наш космический мегаполис соседствует с галактиками Андромеда и Треугольника. Окружение троице составляют более 40 мелких галактик. Местная группа уже входит в состав еще более крупного образования и является частью сверхскопления Девы. Некоторые утверждают, что это только приблизительные предположения о том, где находится наша галактика. Масштабы образований настолько огромны, что все это представить практически невозможно. Сегодня мы знаем расстояние до ближайших соседствующих галактик. Другие объекты глубокого космоса находятся за пределами видимости. Только теоретически и математически допускается их существование.

Что касается обозримого мира, то сегодня имеется достаточно информации о том, как выглядит наша галактика. Существующая модель, а вместе с ней и карта Млечного Пути, составлена на основании математических расчетов, данных полученных в результате астрофизических наблюдений. Каждое космическое тело или фрагмент галактики занимает свое место. Это, как и во Вселенной, только в меньшем масштабе. Интересны астрофизические параметры нашего космического мегаполиса, а они впечатляют.

https://youtube.com/watch?v=QUmLohLA0uM

Наша галактика спирального типа с перемычкой, которую на звездных картах обозначают индексом SBbc. Диаметр галактического диска Млечного Пути составляет порядка 50-90 тысяч световых лет или 30 тысяч парсек. Для сравнения радиус галактики Андромеды равен 110 тыс. световых лет в масштабах Вселенной. Можно только представить насколько больше Млечного Пути наша соседка. Размеры же ближайших к Млечному Пути карликовых галактик в десятки раз меньше параметров нашей галактики. Магеллановы облака имеют диаметр всего 7-10 тыс. световых лет. В этом огромном звездном круговороте насчитывается порядка 200-400 миллиардов звезд. Эти звезды собраны в скопления и туманности. Значительная ее часть – это рукава Млечного Пути, в одном из которых находится наша солнечная система.

Все остальное — это темная материя, облака космического газа и пузыри, которые заполняют межзвездное пространство. Чем ближе к центру галактики, тем больше звезд, тем теснее становится космическое пространство. Наше Солнце располагается в области космоса, состоящем из более мелких космических объектов, находящихся на значительном расстоянии друг от друга.

Масса Млечного Пути составляет 6х1042 кг, что в триллионы раз больше массы нашего Солнца. Практически все звезды, населяющие нашу звездную страну, расположены в плоскости одного диска, толщина которого составляет по разным оценкам 1000 световых лет. Узнать точную массу нашей галактики не представляется возможным, так как большая часть видимого спектра звезд, скрыта от нас рукавами Млечного Пути. К тому же неизвестна масса темной материи, которая занимает огромные межзвездные пространства.

Центр галактики имеет диаметр 1000 парсек и состоит из ядра с интересной последовательностью. Центр ядра имеет форму выпуклости, в которой сосредоточены крупнейшие звезды и скопление раскаленных газов. Именно эта область выделяет огромное количество энергии, которая по совокупности больше, чем излучают миллиарды звезд, входящие в состав галактики. Эта часть ядра самая активная и самая яркая часть галактики. По краям ядра имеется перемычка, которая является началом рукавов нашей галактики. Такой мостик возникает в результате колоссальной силы гравитации, вызванной стремительной скоростью вращения самой галактики.

Рассматривая центральную часть галактики, парадоксальным выглядит следующий факт. Ученые долгое время не могли понять, что находится в центре Млечного Пути. Оказывается, в самом центре звездной страны под названием Млечный Путь устроилась сверхмассивная черная дыра, диаметр которой составляет порядка 140 км. Именно туда и уходит большая часть энергии, выделяемой ядром галактики, именно в этой бездонной бездне растворяются и умирают звезды. Присутствие черной дыры в центре Млечного Пути свидетельствует о том, что все процессы образования во Вселенной, должны когда-то закончиться. Материя превратится в антиматерию и все повторится снова. Как будет себя вести это чудовище через миллионы и миллиарды лет, черная бездна молчит, что указывает на то, что процессы поглощения материи только набирают силу.

Негостеприимная богиня

Подобные исследования разочаровали астрономов. До последнего никто не был уверен, что скрывает спокойный и ровный свет. Изучение объекта стало возможным только при помощи радиолокации. Полную карту поверхности составила в 1997 году геологическая служба Америки. Самая близкая планета к земле планета Венера полностью лишена воды. Учёные предположили, что когда-то она покрывала её, но постепенно испарилась, оставив гигантские котловины, изрезанные длинными каналами вулканической лавы.

На поверхности объекта обнаружено более 160 крупных вулканов. Некоторые из них устрашающих размеров, более 100 км. Наблюдения подтвердили, что они извергают лаву. Привычные осадки на венерианской поверхности отсутствуют, а грозовые штормы, наблюдаемые в атмосфере, способны создавать вулканы.

Математически рассчитав величины возвышенностей, астрономы выделили два материка — Иштар и Афродита. Каждая из них может похвастаться колоссальными объектами. Иштар опекает самую высокую вершину на планете – одиннадцатикилометровые горы Максвелл, а Афродита грандиозный вулкан Маат. Американский космический корабль Magellan обнаружил, что ни один из кратеров не превышал диаметром 2 000 километров. Из этого следует, что метеориты меньших размеров просто сгорают в адской атмосфере. Самый большой из них занимает площадь в 30 километров. Большие рытвины тоже отсутствуют, исследователи единогласны, что ближайшая к земле планета относительно молода.

Характеристики

Яркость и спектральные характеристики

Проксима Центавра является красная карликовая звезда типа , поскольку он расположен на главной последовательности на диаграмме Герцшпрунга-Рассела и его спектральный тип является M5.5 Ve. Его абсолютная величина — 15.48. Его общая светимость равна 0,17% от светимости Солнца, но в диапазоне длин волн, принадлежащих видимому свету, его светимость составляет всего 0,0056% от светимости Солнца. Фактически, 85% излучаемого им света находится в инфракрасном диапазоне длин волн .

Его видимая величина (11,05) очень мала, что типично для красных карликов, которые слишком тусклые, чтобы их можно было увидеть невооруженным глазом.

Расстояние и диаметр

На основании параллакса от 772.33 ± 2,42 дуговых миллисекунд ( MAS ) , измеренных с помощью Гиппаркос спутника , значение уменьшается до 768,5 ± 0,2  мас в издании 2 данных Gaia, Проксима Центавра находится на расстоянии около 4244 световых лет ( др ) от Солнечная система , или 270 000  астрономических единиц ( а.е. ). Для сравнения, Плутон в его афелии находится в 49  а.е. от Солнца.

Сравнение размеров разных звезд (слева направо: Солнце, α Центавра A, α Центавра B и Проксима Центавра).

В 2002 году VLT использовал интерферометрию для измерения углового диаметра Проксимы Центавра: приблизительно 1,02 ± 0,08 миллисекунды. Как мы знаем , его расстояние, поэтому мы можем определить его реальный диаметр: около 1/7 тыс , что Солнца или в 1,5 раза , что от Юпитера , или ~ 200000  км .

Масса

Используя соотношение масса-светимость , масса Проксимы Центавра оценивается примерно на 12,3% от массы Солнца или в 129 раз больше массы Юпитера. Однако эта оценка косвенная. Прямая оценка серьезной массы звезды опубликована А. Зурло и его сотрудниками виюль 2018после изучения двух событий с гравитационной линзой, линзой из которых была Проксима. Тогда масса оценивается в 0,150+0,062 -0,051 солнечная масса.

Плотность и структура

Мы пришли к выводу, что средняя плотность составляет 56 800  кг / м 3 (плотность 56,8), что явно больше, чем 1,409  кг / м 3 (плотность 1,409) Солнца. Из-за малой массы внутренняя часть звезды полностью конвективна. Таким образом, энергия, производимая внутри него, передается наружу за счет физических движений плазмы, а не радиации. Следовательно, гелий, образующийся при термоядерном синтезе , не накапливается в центре звезды, а циркулирует внутри нее. В то время как Солнце израсходует только 10% своих запасов водорода, когда покинет главную последовательность , Проксима Центавра потребит большую долю до того, как закончится ядерный синтез водорода.

Это явление конвекции создает постоянное магнитное поле. Магнитная энергия, генерируемая этим полем, высвобождается в виде звездных вспышек, подобных солнечным, которые значительно увеличивают общую светимость звезды. Эти вспышки могут достигать размеров звезды и повышать температуру плазмы на 1–5 миллионов Кельвинов , чего достаточно для возникновения рентгеновского излучения .

Хромосфера этой звезды активен и его спектр показывает сильную линию ионизированного магния на длине волны 280 нм . Около 80% поверхности Проксимы Центавра является активным, этот показатель намного выше, чем у поверхности Солнца даже во время пика его солнечного цикла . Даже в периоды низкой активности температура его короны поднимается до 3,5 миллионов Кельвинов против 2 миллионов у Солнца. Однако активность этой звезды относительно невысока по сравнению с активностью других красных карликов. Но это согласуется с большим возрастом Проксимы Центавра, который оценивается в несколько миллиардов лет, что приводит к постепенному снижению скорости вращения звезды.

У Проксимы Центавра относительно слабый звездный ветер , вызывающий потерю массы со скоростью 20% от массы Солнца. Но учитывая тот факт, что он меньше, потеря массы на единицу площади примерно в 8 раз больше, чем у Солнца.

Будущее развитие

Проксима Центавра, как красный карлик , исходя из своей массы, как ожидается, останется на своей основной полосе в течение как минимум 1000 миллиардов лет, если не почти в четыре раза больше этого времени. По мере того, как доля гелия в звезде увеличивается из-за синтеза водорода, она становится меньше и горячее, а ее цвет постепенно меняется с красного на синий. В конце этого периода Проксима Центавра станет заметно ярче, и ее светимость достигнет 2,5% от светимости Солнца, что будет значительно нагревать ее планетную систему за миллиарды лет до его окончания. Как только весь водород будет израсходован, звезда превратится в белого карлика, но не пройдет фазу красного гиганта .

Характеристика планеты

Помимо своей приближенности к Солнцу Меркурий выделяется еще и своими размерами. С радиусом всего в 2440км он является самой маленькой из всех 8-ми планет. Для сравнения, это даже меньше размеров простых спутников Сатурна (Титан) и Юпитера (Ганимеда). При этом его масса составляет 3,3х1023кг., а плотность сравнима с земной: 5,43г/см3.

Солнце щедро обогревает эту планету. По сравнению с Землей, Меркурию «достается» в 7мь раз больше тепла и света, чем нашей Земле. При этом он очень медленно вращается вокруг своей оси: один полный оборот за 176 земных суток. В связи с этим поверхность Меркурия с одной стороны всегда бесконечно горяча (здесь температуры достигают +430С), а с другой, погруженной в вечный мрак, очень холодна (-170С).

Меркурий состоит из ядра, мантии и коры. По данным исследователей ядро этой самой близкой к солнцу планете содержит очень значительное количество железа, за счет чего она обладает сильным магнитным полем. Это ядро составляет до 75% от общего состава планеты. Кроме того, удалось выяснить, что кора этого небесного тела имеет в толщину не больше 300 км., а в мантии обнаружилось большое количество силикатов.

История изучения планеты Венера

Люди в древности знали о ее существовании, но ошибочно полагали, что перед ними два разных объекта: утренняя и вечерняя звезды. Стоит отметить, то официально стали воспринимать Венеру как единый объект в 6 веке до н. э., но еще в 1581 году до н. э. существовала вавилонская табличка, где доходчиво объясняли истинную природу планеты.

Для многих Венера стала олицетворением богини любви. Греки именовали в честь Афродиты, а для римлян утреннее появление стало Люцифером.

Транзит Венеры перед Солнцем в 2012 году

В 1032 году Авиценн впервые наблюдал за проходом Венеры перед Солнцем и понял, что планета расположена к Земле ближе Солнца. В 12 веке Ибн Баджай отыскал два черных пятна, которые позже объяснились транзитами Венеры и Меркурия.

В 1639 году за транзитом следил Джеремия Хоррокс. Галилео Галилей в начале 17-го века использовал свой прибор и отметил фазы планеты

Это было крайне важное наблюдение, которое говорило о том, что Венера обошла Солнце, а значит Коперник был прав

В 1761 году Михаил Ломоносов обнаружил атмосферу на планете, а в 1790 году ее отметил Иоганн Шретер.

Художественная интерпретация поверхности Венеры

Первое серьезное наблюдение провел Честер Лайман в 1866 году. Вокруг темной стороны планеты отметилось полное световое кольцо, что еще раз намекало на наличие атмосферы. Первый УФ-обзор выполнили в 1920-х гг.

Об особенностях вращения поведали спектроскопические наблюдения. Весто Слайфер пытался определить доплеровское смещение. Но когда ему это не удалось, он начался догадываться, что планета выполняет обороты слишком медленно. Более того, в 1950-х гг. поняли, что имеем дело с ретроградным вращением.

Радиолокацию использовали в 1960-х гг. и получили близкие к современным показателям вращения. О деталях, вроде Горы Максвелл, смогли говорить благодаря Обсерватории Аресибо.

Слабое магнитное поле

В настоящее время ландшафт планеты представляет собой одну большую периодически вулканирующую пустыню. На поверхности небесного тела воды нет, но существует высокая вероятность её наличия в атмосфере. Впрочем, из-за полного отсутствия магнитного поля солнечный ветер выдувает водород и некоторые другие элементы в открытый космос. Почему Венера не обладает своей магнитосферой до конца не ясно. Учёные видят причину в низкой скорости вращения планеты или же отсутствии какого-либо движения потоков в мантии. На поверхности планеты давление очень высокое — примерно в 92 раза выше земного.

Состав планеты Венера: структура и строение

Венера принадлежит к группе скалистых планет, поверхность которых имеет твердую и каменистую основу. В отличие от газовых гигантов Юпитера, Сатурна, Урана и Нептуна, вторая планета имеет высокую плотность. Средняя плотность планеты равняется 5,204 г/см3. По основным физическим параметрам Венера очень похожа на Землю. Об этом говорят плотность планеты, ее масса и размеры.

Основные параметры Венеры следующие:

  • средний радиус планеты Венера составляет 6052 км;
  • диаметр планеты в экваториальной плоскости составляет 12100+- 10 км, 95% земного диаметра;
  • длина экватора Венеры равняется 38025 км и составляет так же 97% длины земного экватора;
  • площадь поверхности «утренней звезды» равняется 460 млн. квадратных километров, 90% площади земной поверхности;
  • астрономическая масса планеты Венера – 4.87 триллиона триллионов кг;
  • объем планеты равен 928 миллиардов км3.

Практически одинаковы с Землей состав и структура планеты. У нее тоже имеется металлическое ядро, окруженное мантией. Поверхность планеты так же, как и на Земле представлена тонкой корой. Принято считать, что венерианское ядро диаметром около 6000 км имеет железоникелевый состав. Толщина мантии довольно внушительна, около 3000 км. Установить точный химический состав венерианской мантии не представляется возможным. Вероятно, как и на Земле, основу ее составляют силикаты. Кора на планете по толщине идентична земным параметрам и имеет среднюю толщину 16-30 км.

На этом сходства двух планет заканчиваются. Далее появляются существенные различия, которые делают обе планеты совершенными противоположностями. Тектонические процессы на Венере происходили в далеком прошлом. Формирование венерианской коры завершилось примерно 500-600 млн. лет назад. Поверхность планеты представлена застывшими базальтовыми морями, разделенными обширными возвышенностями. Некоторые возвышенности на поверхности выше, чем на земле, а высота венерианских гор достигает 11 км. Впадины и котловины, схожие по форме и структуре с земными океанами занимают 1/6 часть поверхности планеты. На планете не так много кратеров астрофизического происхождения. Самый большой из них имеет диаметр 30 км, сделанный упавшим астероидом более 1 млн. лет назад.

В каком состоянии пребывает внутреннее ядро планеты – неизвестно. Однако практически полное отсутствие магнитного поля, говорит в пользу того, что ядро находится в застывшем состоянии. Отсутствие конвекции между жидкими внутренними слоями планеты приводит к отсутствию динамо-эффекта, который возникает в результате трения между внутренними слоями планеты. Этим и объясняется, что Венере – одной из двух планет-близнецов земной группы – досталось такое слабенькое магнитное поле, всего 5-10% от силы земной магнитосферы. Магнитное поле Венеры очень слабо и в основном образуется за счет захваченных притяжением планеты частиц солнечного ветра.

https://youtube.com/watch?v=r5xfvOvas5s

7 место. Меркурий

Среди других объектов Солнечной системы планета Меркурий рассматривается как кандидат для колонизации. Лучше всего заселять район полюсов, т. к. там имеются ледяные шапки (пока что предположительно) и минимальны суточные перепады температуры. На Меркурии не будет проблем с энергией благодаря близкому расположению к Солнцу, да и на полезные ресурсы эта планета богата, жаль только не на пищевые… К достоинствам Меркурия можно отнести наличие магнитного поля, которое сможет справиться с солнечным ветром и космическим излучением, хотя не так эффективно, как Земля.

Но близость к Солнцу и отсутствие более-менее плотной атмосферы делают Меркурий не столь привлекательным в плане колонизации. Ну и бонусным недостатком является продолжительность суток в 176 земных. Терраформирование в таких условиях просто нецелесообразно, поэтому придется обходиться колонией под землёй. В любом случае организация возможности проживания человека на Меркурии будет довольно длительной и трудозатратой. Из-за гравитации Солнца даже сам перелёт будет чрезвычайно энергозатратным и опасным. Именно поэтому лишь 7 место.

Планеты-гиганты — самые крупные планеты Солнечной системы

В Солнечной системе есть четыре планеты-гиганта: Юпитер, Сатурн, Уран и Нептун.
Поскольку эти планеты расположены за пределами Главного пояса астероидов, их называют «внешними» планетами Солнечной системы.
По размеру среди этих гигантов чётко выделяются две пары.
Самая большая планета-гигант — Юпитер. Сатурн совсем немного ему уступает.
А Уран и Нептун резко меньше первых двух планет и они расположены дальше от Солнца.
Посмотрите на сравнительные размеры планет-гигантов относительно Солнца:

Планеты-гиганты защищают внутренние планеты Солнечной системы от астероидов.
Не будь этих тел в Солнечной системе, наша Земля в сотни раз чаще подвергалась бы падению астероидов и комет!
Как же планеты-гиганты защищают нас от падений незванных гостей?

Подробнее узнать о самых больших планетах Солнечной системы можно здесь:

Юпитерсамая большая планета планета с кольцами ледяной мир, самая холодная планета самая дальняя планета Солнечной системы

Сколько лететь до Венеры

Самым первым летательным аппаратом, достигшим Венеры, стала американская исследовательская станция «Маринер-2», запущенная 27 августа 1962 г. Чтобы долететь до цели, ей потребовалось 110 суток. В 2005 г. был отправлен последний межпланетный корабль «Венера-Экспресс», который, несмотря на последние достижения космической отрасли, добирался до объекта исследований 153 дня.

Такая разница объясняется целым рядом параметров, среди которых важнейшими являются определение скорости запуска и расчет траектории полета. Минимум времени потребуется аппарату для достижения Венеры, если он будет выведен на смежную орбиту, догонит объект и после этого сможет осуществить посадку или стать его искусственным спутником. Однако для того, чтобы сделать полет дешевле, а проект экономически выгодным, необходимо сокращение количества топлива в разгонном блоке, что ведет к увеличению времени в пути.

Важность солнечного излучения

Мощная энергия, выделяемая в процессе непрерывно происходящего ядерного синтеза, пронзает космическое пространство. В каком количестве её получают спутники Солнца, зависит от многих причин. В частности, имеют значение размеры планеты и её удалённость от звезды. Земля получает такую энергию в количестве, достаточном для того, чтобы поддерживалась жизнь.

Нужно заметить, что энергетические потоки доходят до поверхности нашей планеты не в полном объёме. Определённая их доля поглощается и отражается атмосферой. Количество поступающей энергии также отличается в разные времена года. Имеет значение и географическая широта местности.

Энергия, посылаемая светилом, незаменима для людей и всех живых организмов. Благодаря свету, достигшему земной поверхности, поддерживаются различные процессы. Примером является фотосинтез у растений. Их листья содержат хлорофилл, улавливающий свет, что даёт Солнце. Эта энергия помогает растениям создавать важные вещества из углекислого газа и воды. Продуктом является кислород, обеспечивающий жизнь на планете. В областях Земли с недостатком света и тепла растения низкорослые и не отличаются большим количеством и разнообразием.

Энергия, которую излучает Солнце, применяют и в искусственных процессах. В результате которых, например, генерируется электрический ток. Люди также используют антисептические свойства ультрафиолетовых лучей для обеззараживания воды, тех или иных предметов. Естественный свет необходим для выработки в организме витамина D и исключения рахита. Но действие ультрафиолета стоит контролировать во избежание обратных, опасных для здоровья эффектов.

Лучистая солнечная энергия оказывает огромное влияние на формирование климата в том или ином регионе планеты. От неё зависят в первые очень температурные условия. Лучи попадают на земную поверхность под разным углом. В областях, где он получается прямой, наблюдается самый жаркий климат. Лучи располагаются перпендикулярно поверхности Земли на экваторе. За счёт того, что они не расходятся в пространстве, на каждый участок попадает максимум энергии. Но в основном лучи ложатся не перпендикулярно, а с наклоном к поверхности. Это обуславливает разницу в климатических условиях

Самая горячая планета не находится ближе всего к Солнцу

Многие знают, что Меркурий – самая близкая к Солнцу планета

, чье расстояние почти в два раза меньше, чем расстояние от Земли до Солнца. Неудивительно, что многие люди считают, что Меркурий является самой горячей планетой.

На самом деле самой горячей планетой Солнечной системы является Венера

— вторая планета близкая к Солнцу, где средняя температура достигает 475 градусов по Цельсию. Этого достаточно, чтобы расплавить олово и свинец. В то же время максимальная температура на Меркурии составляет около 426 градусов по Цельсию.

Но из-за отсутствия атмосферы температура поверхности Меркурия может варьировать на сотни градусов, в то время как углекислый газ на поверхности Венеры поддерживает практически постоянную температуру в любое время дня и ночи.