Сколько идёт сигнал от земли до марса?

Между мощностью исходящего и принимаемого сигнала — гигантская разница

Теперь перейдем к техническим возможностям этих передатчиков. Здесь тоже много интересного. Так, мы знаем, что передатчики, установленные на этих антеннах и направленные на космические объекты, имеют мощность от 20 кВт в диапазоне X (частоты от 8 до примерно 12 ГГц) до 400 кВт (но следует помнить, что использование мощности более 100 кВт требует корректировки в зависимости от состава воздуха и способа управления трафиком) в диапазоне S (частоты примерно от 2 до 4 ГГц, то есть подобны сигналу домашнего Wi-Fi или некоторых мобильных сетей). Для сравнения, мощность сильнейших передатчиков базовой станции 5G составляет 120 Вт, но обычно она намного меньше, а луч формируется иначе, чем в случае передачи на космические аппараты.

При получении сигнала крупнейшие антенны сети DSN способны улавливать луч мощностью порядка 10-18 Вт. Такую мощность, например, имеет сигнал от Voyager 2. Сигналы с Марса также примерно такого порядка, учитывая расстояние и ограниченный энергетический ресурс зондов.

MRO (Mars Recoinassance Orbiter) имеет два усилителя сигнала мощностью 100 Вт для каждого диапазона X, и еще один резервный, на случай, если один из основных выйдет из строя. У него также есть экспериментальный передатчик, работающий в диапазоне Ка (частоты в диапазоне 26-40 ГГц), который осуществляет передачу с мощностью 35 Вт, но только для целей тестирования.

Страница DSN наглядно показывает, кому или от кого данные сейчас направляются или принимаются. Кроме всего прочего, после нажатия на ярлык с указанием миссии, мы можем увидеть дополнительные данные. Марсоход Perseverance сокращенно называется M20, и данные получаются главным образом от MRO.

Марсианская атмосфера

Марсианская атмосфера находится в крайне разряженном состоянии – порядка процента от земной. Девяносто шесть процентов воздуха Марса составляет углекислый газ с незначительными вкраплениями кислорода. Так что выйти подышать свежим воздухом у марсонавтов не получится.

Но испытания на этом не заканчиваются. На планете случаются страшные песчаные бури. Они могут длиться от нескольких часов до нескольких дней и накрывать практически всю планету. Песок, поднимающийся в это время, может оказаться очень токсичным для человеческого организма. Так что, если захочется прогуляться, то сделать это можно в спокойную погоду и только в скафандрах.

Как выберут первых поселенцев?

Конечно, у всех на уме возникает вопрос: будет ли проект идти по плану, и отправит ли Mars One первых астронавтов на Марс? Как они выберут первых четырех добровольцев, которые ступят на другую планету? Это большая честь, и их имена наверняка войдут в историю.

Так как они будут выбирать?

Короткий ответ: Марс Один не выберет. Ожидается, что к этому этапу будут готовы шесть групп, и выбор останется за вами, мной и остальной частью планеты.

Поскольку Марс Один считает, что это является частью истории человечества, они хотят, чтобы мы оставляли это на наше усмотрение. По их словам, весь мир сможет проголосовать за свою любимую группу, когда придет время.

Как зонд или марсоход «разговаривает» с Землей?

Мы уже знаем, как данные с Марса получают на Земле, но как инициируется связь от аппаратов на Красной планете? Зонды, которые находятся на орбите, имеют более благоприятные условия для того, чтобы связаться с Землей и передать большие объемы данных. Для такой связи используется наиболее часто упоминаемый диапазон X. Марсоход Perseverance, как и Curiosity, использует для связи два передатчика (низкой и высокой мощности), работающих на этой полосе.

С их помощью марсоход может самостоятельно «звонить» домой, но скорость передачи данных от мощного передатчика составляет максимум 800 бит/с когда сигнал принимается 70-метровой антенной, или 160 бит/с когда это 34-метровая антенна. Маломощный передатчик является лишь крайним средством, поскольку он имеет только 10-битный канал для передачи и 30-битный для приема данных.

Поэтому сегодня марсоходы Curiosity и Perserance обычно сначала подключаются в диапазоне УВЧ к своей «базовой станции» на орбите Марса — зондам, которые оборудованы гораздо большими передающими антеннами. Для этого используются MRO, MAVEN (Mars Atmospheric and Volatile EvolutioN), Mars Odyssey, European Mars Express и TGO (Trace Gas Orbiter). Они образуют сеть под названием MRN (Mars Relay Network).

До того, как была создана такая ретрансляционная сеть, аппаратам, таким как Viking 1 и 2, приходилось полагаться на сопутствующие орбиты. Для прямой связи с Землей использовали передатчики мощностью 20 Вт и диапазон S, связь осуществлялась на частоте 381 МГц (диапазон УВЧ), подобно марсоходам сегодня.

Space X и Mars One – это не один и тот же проект

Space Exploration Technologies Corporation, широко известная как SpaceX, является производителем аэрокосмических и космических транспортных услуг, которая была основана в 2002 изобретателем из Южной Африки и деловым магнатом Илоном Маском. Их цель состоит в том, чтобы сделать космические перевозки более дешевыми, что позволило бы ускорить колонизацию Марса.

В 2016 Маск объявил о своих планах по программе межпланетной системы, которая будет развивать передовые технологии космических полетов. В дальнейшем они будут использованы для доставки колонистов на Марс. Отличие двух проектов заключается в том, что SpaceX хочет позволить людям путешествовать туда и обратно, в то время как Mars One сохраняет свои расходы на низком уровне, отправляясь в полет в один конец.

Как измеряется расстояние до звезд и что такое световой год?

Расстояния между звездами настолько велики, что измерять их километрами или милями – занятие с бесконечными нолями. Привычную систему измерений применяют для обозначения расстояний в одной системе. К примеру называют, что минимальное расстояние от Земли до Марса – 55,76 миллионов километров. Со звездами всё сложнее, и здесь обычно используют понятия светового года и парсека.

Астрономическая единица – принятая в астрономии единица измерения объектов Солнечной системы и ближайших к ней объектов Вселенной. Астрономическая единица равна 149 598 100 км (+- ~750 км), что приблизительно равняется среднему расстоянию Земли от Солнца. Современные наблюдения зафиксировали постепенно увеличение значения на 15 см ежегодно, что объясняется, возможной потерей Солнцем массы, последствия солнечного ветра.

Световой год – расстояние, которое свет проходит за один год, в метрах это 9 460 730 472 580 800. На самом деле свет звезд, который мы видим в безоблачную ночь, шёл до нашей планеты многие столетия, а некоторые из них вообще больше не существуют.

Парсек, он же «параллакс угловой секунды» – это расстояние, с которого средний радиус орбиты Земли (перпендикулярный лучу зрения), виден под углом в одну секунду угловую. Если совсем просто, то парсек = 3,26 световым годам.

Интересно то, что в научно-популярной и фантастической литературе принято использовать понятие светового года, а парсеками обычно пользуются только в профессиональных трудах и исследованиях.

Ближайшая к нам звезда – это Альфа Центавра, которая находится от Земли на расстоянии в 4,37 световых лет. А вот до самой удалённой галактики (по состоянию на декабрь 2012 года) от Земли целых 13,3 миллиардов световых лет!. Получается, когда солнце этой самой галактики (известной под индексом UDFj-39546284) потухнет, человечество об этом узнает еще не скоро.

Расстояния в цифрах

  • Меркурий– ближайшая к Солнцу планета, среднее расстояние от Солнца 0,387 а. е (58 млн. км), а расстояние до Земли колеблется от 82 до 217 млн. км. Меркурий движется вокруг Солнца по сильно вытянутой эллиптической орбите, плоскость которой наклонена к плоскости эклиптики под углом 7°. 
  • Венера– вторая по удаленности от Солнца планета, среднее расстояние от Солнца 0,72 а.е. (108,2 млн. км). Средний радиус планеты составляет 6051 км, масса – 4,9 на 10 в 24 степени кг (0,82 массы Земли), средняя плотность 5,24 г/см3. 
  • Земля– третья от Солнца планета Солнечной системы, среднее расстояние от Солнца 1 а.е. (149,6 млн. км), средний радиус 6371,160 км (экваториальный 6378, 160 км, полярный 6356,777 км), масса – 6 на 10 в 24 степени кг. 
  • Марс– четвертая планета от Солнца, среднее расстояние от Солнца составляет 1,5 а.е. (227,9 млн. км). Минимальное расстояние от Марса до Земли составляет 55,75 млн. км, максимальное – около 401 млн. км. 
  • Юпитер– пятая по счету от Солнца, а также крупнейшая планета Солнечной системы, среднее расстояние от Солнца 5,2 а.е.(778 млн. км), экваториальный радиус равен 71,4 тыс. км, полярный – около 67 тысяч км, масса 1,9 на 10 в 27 степени кг (317,8 массы Земли), средняя скорость обращения вокруг Солнца – 13,06 км/с.
  • Сатурн– шестая планета от Солнца и вторая по размерам планета в Солнечной системе после Юпитера. Среднее расстояние Сатурна от Солнца 9,54 а.е. (1,427 млрд. км), средний экваториальный радиус около 60,3 тысяч км, полярный – около 54 тысяч км, масса 5,68 на 10 в 26 степени кг (95,1 массы Земли). 
  • Уран– седьмая от Солнца планета Солнечной системы. Планета была открыта в 1781 году английским астрономом Уильямом Гершелем и названа в честь греческого бога неба Урана. Среднее расстояние от Солнца 19,18 а.е. (2871 млн. км), средний радиус 25560 км, масса 8,69 на 10 в 25 степени (14,54 массы Земли), средняя плотность – 1,27 г/см3. 
  • Нептун– восьмая планета от Солнца и четвертая по размеру среди планет. Нептун открыт в Берлинской обсерватории 23 сентября 1846 года немецким астрономом Иоганном Галле на основании предсказаний, сделанных независимо математиком Джоном Адамсом в Англии и астрономом Урбеном Леверрье во Франции. Среднее расстояние планеты Нептун от Солнца 30,1 а.е. (4497 млн. км), средний радиус около 25 тысяч км, масса 1,02 на 10 в 26 степени кг (17,2 массы Земли), плотность 1,64 г/см3.
  • Плутоном– в честь древнеримского бога подземного царства. В тот момент предполагали, что его масса сравнима с массой Земли, но позже было установлено, что масса Плутона почти в 500 раз меньше земной, даже меньше массы Луны. Масса Плутона 1,2 на 10 в22 степени кг (0,22 массы Земли). Среднее расстояние Плутона от Солнца 39,44 а.е. (5,9 на 10 в12 степени км), радиус около 1,65 тысяч км.

Иногда другого выхода нет, приходится много работать и ждать данных днями, а то и месяцами

К счастью, в случае с марсианскими миссиями у ученых пока не было таких проблем. Но если кто-то из вас помнит зонд «Галилео» 1990-х годов, то знаете, что тогда возникли большие проблемы с наземным управлением. Передающая антенна зонда была развернута лишь частично, поэтому не смогла достичь прогнозируемой пропускной способности 134 кбит/с. Ученым пришлось разработать новые методы сжатия данных, чтобы не потерять связь с зондом. Им удалось увеличить производительность второй антенны с низким коэффициентом усиления с 8-16 бит/с (да, биты в секунду) до 160 бит/с, а затем примерно до 1 кбит/с. Это было еще очень мало, но оказалось достаточным, чтобы спасти миссию.

С другой стороны, очень далекие космические аппараты должны быть оснащены очень мощными передающими антеннами и источниками энергии, так как передача длится долго. От зонда New Horizons, передающая антенна которого имеет мощность 12 Вт, после его пролета вблизи Плутона ученые месяцами ждали передачи полного набора данных.

Можно ли решить эту проблему? Да, можно, но для этого нам нужно строить коммуникационные сети по всей Солнечной системе, но это требует много времени, усилий и, конечно же, огромных финансовых вливаний.

Сколько лететь до Марса по времени

Хотя на Красную планету ещё не ступала нога человека, беспилотных космических аппаратов и «марсоходов» здесь побывало уже немало. Сколько они летели от Земли до Марса по времени?

Чтобы лучше понять расстояние, сколько лететь до Марса от Земли по времени, нужно узнать кое-что о предыдущих миссиях на эту планету:

  1. Mariner-4. Первым к «Красной планете» в 1964 году приблизился Маринер-4 (Mariner-4, от англ. — Моряк) — автоматическая межпланетная станция программы НАСА. Путь в один конец составил 228 дней. Аппарат делал снимки Марса с расстояния от 16 800 км до 12 000 км до его поверхности – учёные следили, затаив дыхание. Ведь первоначально допускалось, что на Марсе может быть вода в жидком состоянии, а значит – растения и другие виды жизни. 21 снимок передал Маринер-4, и окончательно выяснилось, что «Красная планета» больше напоминает Луну, чем Землю. А из живых организмов здесь могут быть разве что мхи и лишайники.
  2. Mariner-6(Маринер-6) отправился в путь в феврале 1969 года. На полёт ему понадобилось 155 дней. Расстояние до поверхности планеты на этот раз составило всего 3429 км. Помимо съёмок, на данный аппарат возлагалась важная задача – исследовать состав атмосферы и определить температуру поверхности Марса, исходя из показателей инфракрасного излучения.
  3. Mariner-7 (Маринер-7) был дублёром Маринера-6, его путешествие к Марсу длилось 128 дней. Он также изучал атмосферу и температуру планеты.
  4. В 1971 году к Марсу отправился Маринер-9 (Mariner-9). Он добрался до заданной точки за 168 дней. И стал первым спутником «Красной планеты». С помощью этого аппарата была составлена карта Марса. Работал он до октября 1972 года. пока у него не кончились запасы сжатого газа.
  5. Viking-1 (Викинг-1). Первый аппарат, предназначенный для посадки на Красную планету был запущен 19 июня 1976 года, добрался за 304 дня.
  6. Viking-2 (Викинг-2) стартовал 7 августа 1976 года и добирался до Марса 333 дня. Он также состоял из орбитальной станции и зонда. Основная задача, стоявшая перед аппаратами данной космической программы, была следующей: поиски жизни. Также тогда было сделано около 16 тыс. снимков Марса. На первых цветных фотографиях Марс подтвердил своё второе название. Планета представляла собой красную пустыню, и даже небо казалось розовым из-за пыли, которую поднимал ветер.
  7. В 1996 году за изучение планеты принялся Mars Global Surveyor (Марс Глобал Сервейор), долетевший до Марса за 308 дней. Это был также проект НАСА, и очень успешный. Аппарат вышел на круговую полярную орбиту Марса в 1999 году и занимался картографированием поверхности планеты. Работал до 2001 года.
  8. Mars Pathfinder (Марс Патфайндер), аппарат США, стартовавший 4 декабря 1996 года, 4 июля 1997 года совершил посадку на планету, Он изучал марсианские камни, температуру поверхности, ветер и делал снимки.
  9. Mars Express (Марс-экспресс) – станция Европейского космического агентства – отправилась в путь 25 декабря 2003 г и достигла цели за 201 день.
  10. Mars Reconnaissance Orbiter (Марсианский разведчик) полетел к Марсу в августе 2005 г, а в марте 2006-го вышел на его орбиту. Дорога заняла 210 дней. Одной из целей, стоящих перед «Разведчиком» было найти место, где могли бы высадиться люди.
  11. Maven (Мавен) – американский межпланетный зонд– был запущен в ноябре 2013 года и летел до Марса 307 дней. Основной его задачей было исследование атмосферы «Красной планеты».

Посмотрите очень увлекательное видео о попытках полета на Марс и современных проблем:

Как видно из приведённых данных, время в пути зависит от взаимного расположения небесных тел.

Неудачные полеты

Помимо этих, достаточно успешных проектов, было ещё немало других, окончившихся неудачно. Например, технические неполадки, регулярно преследовали «Марсы», построенные в СССР. То происходила авария ракеты-носителя, то не срабатывала разгонная ступень, то была утеряна связь с аппаратом. А «Зонд-2», отправленный Советским Союзом к Марсу в 1964 году, вообще не попал в район планеты.

Впрочем, неудачи на этом поприще преследовали не только СССР. В 1971 году у «Маринера-8»(Mariner-8) США произошла авария ракеты-носителя, в 1998 году свой аппарат на орбиту Марса не удалось вывести японцам, в 2011 году была неудачная попытка запуска у Китая.

Всё это говорило о том, как трудно спланировать и выполнить такой полёт. И в сотни раз умножается ответственность, когда на борту летят люди.

Как происходит передача сигнала между Марсом и Землей

Чтобы могла возникнуть радиосвязь, нужны как минимум две станции, находящиеся на определенном расстоянии – передающая и принимающая. Связь Марса с Землей, все общение между двумя планетами осуществляется через спутники.

На орбитальных модулях, таких как Марс Одиссей, Марс Экспресс, Марс Ренессанс, индийской межпланетной станции «Мангальян», связь с Марсом происходила при помощи антенны с высоким коэффициентом направленного действия. Она была настроена на Землю. Оповещение, достигающее Земли, было довольно слабым, но наземная сеть станций собирала сигнал, усиливала его и расшифровывала данные.

Планетоходы же отправляли лучи с данными на орбитальные станции Марс Экспресс и Марс Одиссей, а последние уже передавали их на Землю.

Структура и состав Марса

Марс относится к планетам земной группы, повторяя структуру Земли, поэтому наблюдается дифференциация, то есть наличие слоев, где плотные материалы группируются возле центра. Ядро охватывает примерно 1700-1850 км и представлено серой, железом и никелем. Можете изучить состав и строение Марса на фото.

Внутреннее строение Марса

Вокруг Марса расположена силикатная мантия, которая ранее могла похвастаться тектонической и вулканической подвижностью. В коре присутствует магний, железо, кремний, кислород, кальций, алюминий и калий. Красный оттенок появляется из-за окислительного процесса железной пыли.

Магнетизм и геологическая активность

Марсианское ядро по большей части плотное и лишено движения. Из-за этого планета не обладает сплошным магнитным полем и вынуждена принимать огромное количество космических лучей. Но модели показывают, что древний Марс обладал магнитным полем, так как остались намагниченные территории.

Полеомагнетизм минералов напоминает магнитные поля, замеченные на некоторых океанических земных поверхностях. После этого возникла идея, что у Марса была тектоническая активность, прекратившаяся 4 миллиардов лет назад.

Мантия также лишена тектонической активности, поэтому не может деформироваться или поучаствовать в вырывании углерода из атмосферы. Средняя толщина коры – 50 км, но может достигать и 125 км. Представлена базальтом, выплеснутым при вулканической активности миллиарды лет назад.

Формирование и эволюция

Большая часть состава Марса основывается на расстоянии от Солнца. Элементы с низкими показателями температуры кипения (хлор, сера и фосфор) чаще попадаются на Красной планете, чем у нас. Поэтому считают, что они удалились из ближайших к Солнцу районов ветрами.

После формирования все планеты прошли этап интенсивной бомбардировки, где примерно 60% Марса попало под удар.

Северо-Полярный бассейн – крупная синяя территория в северной части топографической марсианской карты

Кратерным образованиям удалось хорошо сохраниться из-за медленного процесса эрозии. Равнина Эллады считается крупнейшим кратером, простирающимся на 2300 км и на 9 км в глубину.

Считают, что наиболее масштабное событие случилось в северном полушарии. Это Северный Полярный бассейн с параметрами 10600 км на 8500 км. Скорее всего, в эту территорию врезалось тело, которое по размерам походило на Плутон. Ниже расписан состав поверхности Марса по химическим элементам.

Состав поверхности Марса

Также отмечают процесс остывания планеты, что могло произойти из-за остановки конвекции внутри внешнего ядра. Это привело к исчезновению магнитного поля.

Поверхность Марса располагает каналами и оврагами, по которым раньше могла течь вода. По крайней мере, частично сформировались от водной эрозии. Некоторые охватывают 2000 км в длину и 100 км в ширину.

  • Интересные факты о Марсе;
  • Колонизация Марса;
  • Марс и Земля;
  • Есть ли жизнь на Марсе;
  • Терраформирование Марса
  • Когда мы отправим людей на Марс?
  • Сравнение Марса и Земли
  • Как Земля выглядит с Марса?
  • Что такое марсианское проклятие?
  • Когда открыли Марс?

Положение и движение Марса

  • Орбита Марса;
  • Сезоны на Марсе
  • Как далеко Марс от Солнца?
  • Сближение Марса
  • Как далеко находится Марс?
  • Сколько лететь до Марса;
  • День на Марсе;
  • Год на Марсе;

Строение Марса

  • Размеры Марса;
  • Кольца Марса;
  • Состав Марса;
  • Атмосфера Марса;
  • Воздух на Марсе;
  • Масса Марса;

Поверхность Марса

  • Поверхность Марса;
  • Лед на Марсе
  • Радиация на Марсе
  • Вода на Марсе;
  • Температура на Марсе;
  • Гравитация на Марсе;
  • Цвет Марса;
  • Почему Марс красный;
  • Насколько холодный Марс;
  • Вулканы на Марсе;
  • Вулкан Олимп;
  • Долина Маринер;
  • Лицо на Марсе;
  • Пирамида на Марсе;

14-секундное знакомство

Первые попытки посадить на планету автоматический аппарат осуществил Советский Союз в начале 1960-х годов. Правда, все они закончились провалом. «Марс 1960А» и «Марс 1960Б» не достигли планеты из-за аварий ракеты-носителя «Молния». Чуть более успешным оказался запуск станции «Марс-1», которая, несмотря на Карибский кризис, все же сумела взлететь с Байконура и подобраться к планете на расстояние в 200 тыс. км, после чего связь с аппаратом была утрачена.

Межпланетная станция «Марс-1», 1963 год

(Фото: Альберт Пушкарев / ТАСС)

В дальнейшем Советскому Союзу удалось лишь 14-секундное пребывание на Марсе: в 1971 году аппарат «Марс-3» сумел успешно приземлиться на планету, однако сильнейшая пылевая буря прервала связь с марсоходом. Много большее удалось американцам.

В 1965 году аппарат «Mariner- 4» подлетел к планете на минимальное расстояние до ее центра — 13 200 км — и сумел сделать 21 изображение с разрешением порядка одного км. Затем уже в 1971 году был запущен первый искусственный спутник планеты «Mariner-9», который доставил на Землю тысячи новых и куда более детализированных снимков.

Например, оказалось, что Марс испещрен вулканическими и тектоническими геологическими формациями, что на нем есть высохшие русла водных потоков. С того момента начались масштабные исследования атмосферы и ионосферы планеты, а также ее окружающей среды.

Наконец, в 1975 году на планету успешно приземлились две автоматические станции «Viking 1» и «Viking 2». На Землю было отправлено более 50 тыс. снимков, которые позволили составить первый картографический набросок планеты. После этого успешных марсианских экспедиций не было более 20 лет. Только в 1996 году на орбиту вышел «Mars Global Surveyor», который сумел сделать уникальные по своей четкости изображения Марса.

Фотография возможного водостока в одном из кратеров Марса, сделанная во время миссии Mars Global Surveyor, 2005 год

(Фото: NASA)

Сегодня в сторону планеты движется новый исследовательский аппарат «Настойчивость» (Perseverance). В случае удачи, марсоход в 2029 году передаст орбитальному кораблю первые образцы марсианского грунта, которые будут доставлены на Землю.

Это особенно важно, потому что за счет мощностей наземных лабораторий ученые смогут определить биологическое происхождение марсианской почвы, а в перспективе — хотя бы частично реконструировать историю жизни на этой планете. В целом за 60 лет активных исследований Марса общее количество миссий на эту планету достигло 45

Из них только 19 были успешными. И это — миссии только для автоматических аппаратов. О пилотируемом полете человека мы пока не вели даже речи

В целом за 60 лет активных исследований Марса общее количество миссий на эту планету достигло 45. Из них только 19 были успешными. И это — миссии только для автоматических аппаратов. О пилотируемом полете человека мы пока не вели даже речи.

Заправка на Луне и полет на Марс

Факт минимальной удаленности Луны от нашей планеты позволяет предположить теоретическое создание на ней специальной базы, служащей своеобразным перевалочным пунктом для больших космических кораблей, транспортирующих, например, большие грузы или ресурсы, необходимые для жизни на Марсе. Сделав остановку на Луне, курсирующие ракеты смогут дозаправиться топливом или переместить груз на другой космический «транспорт», запускающийся непосредственно с Луны. С другой стороны спуски и взлеты с поверхности тоже несут затраты куда лучше было бы заправлять ракеты на орбите. А топливо можно было бы подвозить с луны.

https://youtube.com/watch?v=4VTqu2In2To%3F

Преимущество полета с Луны

Сформировав перевалочную базу на Луне, представится возможность производить там топливо, которым впоследствии можно будет заправлять космические корабли, следующие на дальнее расстояние. Эффективность миссий человечества на Марс, преимущественно стартов с Луны в подобных условиях становятся очевидными:

  • Во-первых, подобная стратегия позволит снизить стоимость полетов на старте до 70%. Дельта – v необходимая для преодоления лунной гравитации равна 2.64км/с а это в 4.77 раз меньше земной.
  • Во-вторых, расстояние становится меньше на 405 696 километров до точки назначения, незначительно в формате солнечной системы, но все же.
  • В-третьих, космические корабли смогут больше нести полезной нагрузки.

Исходя из вышеприведенной информации, логично предположить, что наиболее целесообразным материалом для производства на Луне является топливо для ракет, использующихся в транспортировке грузов на другие планеты. Основным таким ресурсом для корректной работы космических двигателей вероятнее всего станет гелий 3, «создание» которого и стоит организовать на «лунном светиле».

Подводя итог, можно сделать вывод, что межпланетные перелеты, при условии их правильной организации, вполне реальны. Более того, оборудовав надлежащим образом поверхность Луны, перемещения до других небесных тел, в частности до Марса, станут максимально комфортными для людей и безопасными с точки зрения своевременного обслуживания космического «транспорта». А возможность организовать дешевые полеты с поверхности спутника, по финансовым вложениям, увеличит количество запусков на Марс.

Влияние приливов и отливов на дистанцию

По мнению команды японского астрофизика Такахо Миура, расхождение рассматриваемых космических объектов объясняется приливным взаимодействием. Невзирая на малые размеры планеты относительно Солнца, она должна порождать в теле звезды приливы, т. к. более близкие участки светила притягиваются немного сильнее, чем дальние. Подобные приливы передвигаются по поверхности и тормозят вращение объекта. Поскольку полный момент импульса системы Земля-Солнце сохраняется, происходит незначительное расширение гелиоцентрической орбиты.

Аналогичным образом взаимодействуют Земля и Луна. Отклонения орбиты спутника вызывают на планете ежедневные океанические приливы, что приводит к удлинению суток на 1,7 мс за столетие. При этом расстояние между объектами увеличивается на 4 см ежегодно.

Межпланетный интернет

Проект меж планетарного интернета (Interplanetary Internet) предназначен для оснащения станций сверх дальним космическим интернетом. Его разработка ведется на основе нового протокола DTN (Delay/Disruption Tolerant Networking).

В космосе перебои с передачей сигналов – довольно частое явление, и протокол может обеспечить наибольшую проходимость объемов информации даже при сбоях и задержках. Переданный сигнал с данными, полученный на узле, при отсутствии возможности дальнейшей передачи записывается. Затем происходит поиск канала связи, и при появлении возможности связи со следующим узлом данные передаются.

Благодаря этому проекту в будущем на красной планете возможно появление и развитие интернета на Марсе, а научные марсианские станции получат возможность установки вай фай соединений.

Передача информационных данных с помощью сигналов происходит между планетами Марс и Земля с разной скоростью, с разной степенью устойчивости. Количество спутников и орбитальных станций со временем становится больше, и это выдвигает новые требования к уровню оснащенности освоения космического пространства.

Пригодилась информация? Плюсани в социалки!

  • Сравнение Марса и Земли, какая планета больше и в чем их отличие
  • Как посчитать сколько мне лет на Марсе
  • Марсианские особенности планеты