Что такое скорость звука?

Значения других единиц, равные введённым выше

 открыть 

 свернуть 

Система СИ

скорость звука в воздухе → километр в секунду
(км/с)
скорость звука в воздухе → метр в секунду
(м/с)
скорость звука в воздухе → километр в минуту
скорость звука в воздухе → метр в минуту
скорость звука в воздухе → километр в час
(км/ч)
скорость звука в воздухе → метр в час
скорость звука в воздухе → километр в год
скорость звука в воздухе → метр в год

Единицы:

километр в секунду
(км/с)

 /
метр в секунду
(м/с)

 /
километр в минуту

 /
метр в минуту

 /
километр в час
(км/ч)

 /
метр в час

 /
километр в год

 /
метр в год

 открыть 

 свернуть 

США и Британия

скорость звука в воздухе → миля в секунду
скорость звука в воздухе → фут в секунду
скорость звука в воздухе → дюйм в секунду
скорость звука в воздухе → миля в минуту
скорость звука в воздухе → фут в минуту
скорость звука в воздухе → дюйм в минуту
скорость звука в воздухе → миля в час
(mph)
скорость звука в воздухе → фут в час
скорость звука в воздухе → дюйм в час
скорость звука в воздухе → миля в год
скорость звука в воздухе → фут в год
скорость звука в воздухе → дюйм в год

Единицы:

миля в секунду

 /
фут в секунду

 /
дюйм в секунду

 /
миля в минуту

 /
фут в минуту

 /
дюйм в минуту

 /
миля в час
(mph)

 /
фут в час

 /
дюйм в час

 /
миля в год

 /
фут в год

 /
дюйм в год

 открыть 

 свернуть 

Темп (разные виды спорта)

В разных видах спорта часто принято вместо скорости измерять темп, т.е. время, необходимое для преодоления заданного расстояния.

скорость звука в воздухе → минут на километр
скорость звука в воздухе → секунд на километр
скорость звука в воздухе → время на километр
(HH:MM:SS)
скорость звука в воздухе → секунд на стометровку
скорость звука в воздухе → минут на милю
скорость звука в воздухе → секунд на милю
скорость звука в воздухе → время на милю
(HH:MM:SS)
скорость звука в воздухе → секунд на сто ярдов
скорость звука в воздухе → секунд на 500 метров (сплит в гребле)
скорость звука в воздухе → время на 500 метров (сплит в гребле)
(HH:MM:SS)

Единицы:

минут на километр

 /
секунд на километр

 /
время на километр
(HH:MM:SS)

 /
секунд на стометровку

 /
минут на милю

 /
секунд на милю

 /
время на милю
(HH:MM:SS)

 /
секунд на сто ярдов

 /
секунд на 500 метров (сплит в гребле)

 /
время на 500 метров (сплит в гребле)
(HH:MM:SS)

 открыть 

 свернуть 

Морские единицы

скорость звука в воздухе → узел
скорость звука в воздухе → морская миля в час

Единицы:

узел

 /
морская миля в час

 открыть 

 свернуть 

Прочее

скорость звука в воздухе → скорость звука в воздухе
скорость звука в воздухе → скорость света в вакууме

Единицы:

скорость звука в воздухе

 /
скорость света в вакууме

Характеристики звука

Различают две основные характеристики звука: громкость и высоту. Первая из них связана с интенсивностью упругой звуковой волны. Существует и другой важный показатель. Физической величиной, которая характеризует высоту, является частота колебаний упругой волны. При этом действует одно правило: чем она больше, тем звук выше, и наоборот. Еще одной важнейшей характеристикой является скорость звука. В разных средах она бывает различной. Она представляет собой скорость распространения упругих звуковых волн. В газовой среде этот показатель будет меньше, чем в жидкостях. Скорость звука в твердых телах самая высокая. При этом для волн продольных она всегда больше, чем для поперечных.

Звуковые волны

Звуковые волны, как известно из физики, распространяются в упругих средах. Именно поэтому звуки хорошо передаются землей. Приложив ухо к земле, можно издалека услышать звук шагов, топот копыт и так далее.

В детстве все наверняка развлекались, прикладывая ухо к рельсам. Стук колес поезда передается по рельсам на несколько километров. Для создания обратного эффекта звукопоглощения, используют мягкие и пористые материалы.

Например, чтобы защитить от посторонних звуков какое-либо помещение, либо, наоборот, чтобы не допустить выхода звуков из комнаты наружу, помещение обрабатывают, звукоизолируют. Стены, пол и потолок обивают специальными материалами на основе вспененных полимеров. В такой обивке очень быстро затихают все звуки.

Большинство людей прекрасно понимают, что такое звук. Он ассоциируется со слухом и связан с физиологическими и психологическими процессами. В головном мозге осуществляется переработка ощущений, которые поступают через органы слуха. Скорость звука зависит от многих факторов.

От чего зависит скорость распространения звука в стали

Чтобы ответить на этот вопрос, нужно знать, что еще играет роль в этом процессе. Кроме упругости, на скорость звука влияет направление звуковой волны. Она бывает продольной и поперечной. Первая расходится по направлению колебательного движения, а вторая — против него. В твердых телах, в отличие от воздуха, звук может распространяться в обе стороны. Интересно то, что скорость продольной волны при одинаковой частоте колебаний всегда выше, чем поперечной. Разница составляет несколько секунд.

Марки стали различаются по содержанию углерода (он определяет твердость), по количеству неметаллических включений и т. д. Приведем еще один интересный факт. Кажется, что если взять один вид этого сплава, то скорость звука в стали будет постоянной, так как зависит от упругости. Однако это не так. Это свойство характеризует сопротивление деформации, которая бывает разной: кручение, сжатие, сгибание. Тип воздействия тоже определяет скорость звука. Так, продольная волна расходится по нержавеющей стали со скоростью 5 800 м/с, волна сжатия — 5 000 м/с, волна сдвига и кручения — 3 100 м/с.

Источник

Как звуковая волна распространяется в твердых телах

Рассмотрим физику процесса. Звук в стали, как и в твердых телах в целом, распространяется совсем не так, как в газах и жидкостях. Объясняется это отличиями в строении веществ. Атомы твердого тела связаны между собой невидимыми электрическими силами. Все вместе они формируют кристаллическую решетку. Связи действуют, как пружинки. Если какой-то атом сдвигается, то с ним смещаются и другие.

Звук в твердом теле создают колебания частиц и их распространение по кристаллической решетке. Причем движения атомов упорядочены, имеют одну частоту и направление. Процесс становится возможен благодаря упругости, т. е. способности тела сопротивляться давлению. Это свойство и плотность определяют то, с какой скоростью распространяется звуковая волна. В металлах это происходит в десятки раз быстрее, чем в воздухе.

Появление в воздухе звуковой волны

Как только тело выходит из равновесия и начинает колебаться, меняется упругость и давление воздуха. Изменения происходят в близлежащих слоях. С той стороны, куда направлено движение, воздух сжимается, на противоположной стороне — разреживается. Там, где воздух сжимается, давление становится больше атмосферного, а там, где разреживается, понижается на ту же величину. Отклонившись максимально, тело возвращается в начальную точку и движется уже в другую сторону, сжимая противоположный слой воздуха. Цикл повторяется через время, равное частоте колебаний.

Сжатия-разрежения расходятся от близлежащих слоев воздуха в более далекие. Это происходит благодаря упругости среды. Процесс продолжается, пока тело не прекратит двигаться. Распространение сжатий-разрежений называется упругой волной. Как бы далеко она не дошла, волна изменяет в этой точке давление. Давление, превышающее атмосферное, называют акустическим.

Расчёт скорости звука в жидкости и газе[править | править код]

Скорость звука в однородной жидкости (или газе) вычисляется по формуле:

c=1βρ.{\displaystyle c={\sqrt {\frac {1}{\beta \rho }}}.}

В частных производных:

c=−v2(∂p∂v)s=−v2CpCv(∂p∂v)T,{\displaystyle c={\sqrt {-v^{2}\left({\frac {\partial p}{\partial v}}\right)_{s}}}={\sqrt {-v^{2}{\frac {C_{p}}{C_{v}}}\left({\frac {\partial p}{\partial v}}\right)_{T}}},}

где β{\displaystyle \beta } — адиабатическая упругость среды; ρ{\displaystyle \rho } — плотность; Cp{\displaystyle C_{p}} — изобарная теплоёмкость; Cv{\displaystyle C_{v}} — изохорная теплоёмкость; p{\displaystyle p}, v{\displaystyle v}, T{\displaystyle T} — давление, удельный объём и температура, s{\displaystyle s} — энтропия среды.

Для идеальных газов эта формула выглядит так:

c=γkTm=γRTM=αT=γ3v{\displaystyle c={\sqrt {\frac {\gamma kT}{m}}}={\sqrt {\frac {\gamma RT}{M}}}=\alpha {\sqrt {T}}={\sqrt {\frac {\gamma }{3}}}v},

где γ{\displaystyle \gamma } — показатель адиабаты: 5/3 для одноатомных газов, 7/5 для двухатомных (и для воздуха), 4/3 для многоатомных; k{\displaystyle k} — постоянная Больцмана; R{\displaystyle R} — универсальная газовая постоянная; T{\displaystyle T} — абсолютная температура; m{\displaystyle m} — молекулярная масса; M{\displaystyle M} — молярная масса, α=γRM{\displaystyle \alpha ={\sqrt {\frac {\gamma R}{M}}}}; v{\displaystyle v} — средняя скорость теплового движения частиц газа.

По порядку величины скорость звука в газах близка к средней скорости теплового движения молекул (см. Распределение Максвелла) и в приближении постоянства показателя адиабаты пропорциональна квадратному корню из абсолютной температуры.

Данные выражения являются приближёнными, поскольку основываются на уравнениях, описывающих поведение идеального газа. При больших давлениях и температурах необходимо вносить соответствующие поправки.

Для расчёта сжимаемости многокомпонентной смеси, состоящей из невзаимодействующих друг с другом жидкостей и/или газов, применяется уравнение Вуда. Это же уравнение применимо и для оценки скорости звука в нейтральных взвесях.

Для растворов и других сложных физико-химических систем (например, природный газ, нефть) данные выражения могут давать очень большую погрешность.

Влияние высоты на атмосферную акустикуправить | править код

Плотность и давление плавно уменьшаются с высотой, а температура (красный цвет) — нет. Скорость звука (синий цвет) зависит сложным образом от температуры на высоте и может быть рассчитана исходя из нее, поскольку влияние плотности и давления на скорость звука взаимно компенсируют друг друга. Скорость звука увеличивается с высотой в двух областях стратосферы и термосферы из-за разогрева газа в этих областях.

В атмосфере Земли температура выступает главным фактором, влияющим на скорость звука. Для данного идеального газа с постоянной теплоемкостью и составом скорость звука зависит исключительно от температуры. В таком идеальном случае эффекты пониженной плотности и пониженного давления на высоте нейтрализуют друг друга, за исключением остаточного влияния температуры.

Поскольку температура (и, следовательно, скорость звука) уменьшается с увеличением высоты до 11 км, звук преломляется вверх, удаляясь от слушателей на земле, создавая акустическую тень на некотором расстоянии от источника. Уменьшение скорости звука с высотой называется отрицательным градиентом скорости звука.

Однако выше 11 км в этой тенденции происходят изменения. В частности, в стратосфере на высоте более 20 км скорость звука увеличивается с высотой из-за повышения температуры в результате нагрева озонового слоя. Это дает положительный градиент скорости звука в этой области. Еще одна область положительного градиента наблюдается на очень больших высотах, в слое, называемом термосферой (выше 90 км).

Упругость — причина распространения звука в воздухе

Упругость — это способность сопротивляться давлению, деформации. Ученых долго удивляло, что воздух обладает упругостью. Они сравнивали его с водой. Эту жидкость почти невозможно сжать, и она передает давление во все стороны одинаково. Почему же воздух передает давление направленно, почему мы слышим звук с одной стороны? Ломоносов первым объяснил, что воздух упругий из-за постоянного движения атомов. Сила упругости зависит от плотности. Ломоносов рассуждал так: раз воздух можно сжимать, значит, во-первых, между частицами большие расстояния, во-вторых, атомы при столкновении воздействуют друг на друга. Рассмотрим этот процесс подробнее.

Взаимодействие атомов воздуха

Частицы воздуха находятся в постоянном беспорядочном движении. Каждый атом, столкнувшись с другим, отскакивает от него и отталкивается уже от следующего. Газ расширяется, стремится занять весь объем благодаря толчкам частиц. Не будь на Земле притяжения, атмосфера бы уже давно рассеялась. Еще Галилей установил, что воздух имеет вес. Его частицы под действием силы тяжести упали бы на землю, если бы не сталкивались друг с другом и не меняли в результате свою скорость и направление движения. Вес воздуха создает атмосферное давление, оно распространяется благодаря упругости. Какие же изменения происходят в воздухе из-за колеблющегося тела?

Твёрдые тела[править | править код]

В однородных твёрдых телах могут существовать два типа объёмных волн, отличающихся друг от друга поляризацией колебаний относительно направления распространения волны: продольная (P-волна) и поперечная (S-волна). Скорость распространения первой (cP){\displaystyle (c_{P})} всегда выше, чем скорость второй (cS){\displaystyle (c_{S})}:

cP=K+43Gρ=E(1−ν)(1+ν)(1−2ν)ρ,{\displaystyle c_{P}={\sqrt {\frac {K+{\frac {4}{3}}G}{\rho }}}={\sqrt {\frac {E(1-\nu )}{(1+\nu )(1-2\nu )\rho }}},}
cS=Gρ=E2(1+ν)ρ,{\displaystyle c_{S}={\sqrt {\frac {G}{\rho }}}={\sqrt {\frac {E}{2(1+\nu )\rho }}},}

где K{\displaystyle K} — модуль всестороннего сжатия, G{\displaystyle G} — модуль сдвига, E{\displaystyle E} — модуль Юнга, ν{\displaystyle \nu } — коэффициент Пуассона. Как и для случая с жидкой или газообразной средой, при расчётах должны использоваться адиабатические модули упругости.

В многофазных средах из-за явлений неупругого поглощения энергии скорость звука, вообще говоря, зависит от частоты колебаний (то есть наблюдается дисперсия скорости). Например, оценка скорости упругих волн в двухфазной пористой среде может быть выполнена с применением уравнений теории Био-Николаевского. При достаточно высоких частотах (выше частоты Био) в такой среде возникают не только продольные и поперечные волны, но также и продольная волна II-рода. При частоте колебаний ниже частоты Био, скорость упругих волн может быть приблизительно оценена с использованием гораздо более простых уравнений Гассмана.

При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объёмных волн.

Распространение и скорость звука в разных средах

Звук передается не только воздухом. Наверное, все знают, что если приложить ухо к стене, то можно услышать разговоры в соседней комнате. В данном случае звук передается стеною. Звуки распространяются и в воде, и в других средах. Более того, распространение звука в различных средах происходит по-разному. Скорость звука различается
в зависимости от вещества.

Любопытно, что скорость распространения звука в воде почти в четыре раза выше, чем в воздухе. То есть, рыбы слышат «быстрее», чем мы. В металлах и стекле звук распространяется еще быстрее. Это происходит потому, что звук это колебания среды, и звуковые волны передаются быстрее в средах с лучшей проводимостью.

Плотность и проводимость воды больше, чем у воздуха, но меньше, чем у металла. Соответственно, и звук передается по-разному. При переходе из одной среды в другую скорость звука меняется.

Длина звуковой волны также меняется при ее переходе из одной среды в другую. Прежней остается лишь ее частота. Но именно поэтому мы и можем различить, кто конкретно говорит даже сквозь стены.

Так как звук это колебания , то все законы и формулы для колебаний и волн хорошо применимы к звуковым колебаниям . При расчете скорости звука в воздухе следует учитывать и то, что эта скорость зависит от температуры воздуха. При увеличении температуры скорость распространения звука возрастает. При нормальных условиях скорость звукав
воздухе составляет 340
344 м/с.