Самые известные звезды

Не такие уж новые (adsbygoogle = window.adsbygoogle || []).push({});

Нужно заметить, что не всякая яркая звезда, внезапно загоревшаяся на небе, является «новорожденной». Как правило, это так называемая переменная — светило, чей блеск со временем изменяется. Объекты, обозначаемые в астрономии как «новая звезда», также не относятся к только что появившимся телам. Они относятся к катаклизмическим переменным, достаточно резко меняющим свой блеск. Однако сверхновые их в этом значительно опережают: амплитуда изменения у них может составлять до 9 величин. Впрочем, оба эти типа светил — тема для отдельных статей.

Физическая природа звезд во многом сегодня понятна, хотя нет гарантии, что новые данные не опровергнут устоявшиеся теории. Принятые гипотезы и идеи доминируют в науке лишь до того момента, пока могут объяснить наблюдаемые феномены. Каждая новая звезда, обнаруженная на просторах Вселенной, выявляет нерешенные задачи астрономии. Существующее понимание космических процессов далеко не полно, в нем есть достаточно обширные пробелы, касающиеся, например, процесса формирования черных дыр, сверхновых и так далее. Однако, независимо от состояния теории, небесные светила продолжают радовать нас по ночам. В сущности, яркая звезда не перестанет быть прекрасной, если мы полностью познаем ее природу. Или же, наоборот, прекратим всякое изучение.

Звёзды главной последовательности

Главная последовательность диаграммы Герцшпрунга-Рассела, это то место, где звёзды проводят большую часть своей эволюции. Причём продолжительность их «жизни» зависит от доли содержащихся в составе звёзд элементов тяжелее гелия. Включает в себя такие спектральные классы звёзд как:

  • голубые (О);
  • бело-голубые (В);
  • белые (А);
  • жёлто-белые (F);
  • жёлтые (G);
  • оранжевые (К);
  • красные (М).

Все звёзды главной последовательности объединяться одинаковыми ядерными реакциями в их ядре, это синтез (превращение) водорода в гелий, так называемый CNO-цикл (см. терминологию сайта). Вследствие этого их температура (ну и спектральный класс конечно) и светимость всецело зависят от массы звезды.

Массы звёзд на главной последовательности варьируют от, приблизительно, 0,07 масс Солнца, у красных карликов, до 50 – в голубых звёздах.

Типы сверхновых звезд

Стоит отметить, что их обозначение начинается с вида (SN) и года открытия. А оканчивается буквами, которые указывают на порядковый номер объекта в данном году. К примеру, по времени их сначала именуют от А до Z, затем используют аа, ab, ac и др.

Разумеется, представители одного вида тел никогда не могут быть абсолютно идентичными. Они отличаются друг от друга. Главным образом, различается их светимость, природа происхождения, то есть образование.Итак, выделяют два вида:

I тип: в двойной системе (из белого карлика и более массивного компаньона) вещество переходит к карликовому компоненту. В результате происходит взрыв, сжатие и формирование нейтронного светила.

Что интересно, в их спектре нет водорода. По этому показателю, основываясь на состав, их делят на подтипы Ia, Ib и Ic.

Сверхновая типа Ib SN 2008D

К тому же, период пика яркости длится примерно два или три дня. Но отмечается высокий уровень блеска.

II тип: гигант или сверхгигант большой массивности взрывается и его ядро коллапсирует. Его элементы очень быстро разлетаются в разные стороны.

Правда, в таких объектах в спектре наблюдаются линии водорода. Также группируются на подтипы: II-L, II-P, IIb и IIn.

Кроме того, второму типу свойственно более продолжительное увеличение яркости. Хотя она ниже и быстрее уменьшается в отличие от первого вида.

Бесчисленное количество

Любая звезда представляет собой газовый шар, постоянно испускающий свет. Силы гравитации и внутреннего давления предотвращают его разрушение. Физическая природа звезд такова, что в ее недрах постоянно протекают термоядерные реакции. Они прекращаются лишь на определенных стадиях развития светила, о чем будет сказано ниже.

При хороших погодных условиях и отсутствии искусственного освещения на небе можно разглядеть до 3000 тысяч звезд в каждом полушарии. Однако это лишь малая часть того количества, что наполняет космос. Самая близкая к нам звезда — это Солнце. Изучая его поведение, ученые очень многое узнают о светилах вообще. Наиболее близкая звезда вне Солнечной системы — Проксима Центавра. Ее отделяет от нас примерно 4,2 световых года.

Скоротечные галактики

Ранняя Вселенная полна загадок. И одной из таких загадок являются, например, странные галактики, которые по всем законам не должны были существовать достаточно долго, чтобы набрать достаточный уровень наблюдаемости.

Эти галактики уже состояли из сотен миллиардов звезд (по нынешним космологическим стандартам весьма впечатляющая цифра), когда Вселенной было всего лишь 1,5 миллиарда лет или около того. Заглянув «в прошлое» еще дальше, астрономы обнаружили новый тип гиперактивных галактик, которые выросли быстрее всех в ранних галактических гигантов.

Когда Вселенной не было еще и 1 миллиарда лет, эти протогалактики уже содержали огромное число звезд, порождая их в 100 раз быстрее, чем наш Млечный Путь. Исследователи также выяснили, что даже в ранней и довольно пустой Вселенной существовали галактики, которые, сливаясь, создавали самые первые скопления.

Всеобщий стандарт

Любая звезда в начале своего жизненного пути — будь то монструозные гиганты вроде UY Щита или желтые карлики как наше Солнце — состоит приблизительно из равной пропорции одних и тех же веществ. Это 73% водорода, 25% гелия и еще 2% атомов дополнительных тяжелых веществ. Почти таким же был состав Вселенной после Большого взрыва, за исключением 2% тяжелых элементов. Они образовались после взрывов первых во Вселенной звезд, чьи размеры превышали размах современных галактик.

Однако почему тогда звезды такие разные? Секрет кроется в тех самых «дополнительных» 2 процентах звездного состава. Это не единственный фактор — очевидно, что достаточно большую роль играет масса звезды. Именно гравитационное напряжение определяет судьбу светила — сгорит оно за пару сотен миллионов лет, подобно Канопусу, или же будет светить миллиардами лет, как Солнце. Однако дополнительные вещества в составе звезды могут перебить все другие условия.

Состав звезды SDSS J102915 +172927 идентичен составу первых звезд, возникших после Большого взрыва.

Огни Вселенной

Звезда — это огромных размеров газовый шар, излучающий свет и тепло (в этом состоит главное её отличие от планет, которые, будучи абсолютно тёмными телами, способны лишь отражать падающие на них световые лучи). Энергия порождает свет и тепло, возникшая в результате термоядерных реакций, происходящих внутри ядра: в отличие от планет, в состав которых входят как твёрдые, так и лёгкие элементы, небесные светила имеют в своем составе легкие частицы с незначительной примесью твёрдых веществ (например, Солнце почти на 74% состоит из водорода и на 25% – из гелия).

Поскольку вес даже самой маленькой звёздочки значительно превосходит массу самых крупных планет, небесные светила обладают достаточной гравитацией для того, чтобы удерживать вокруг себя все объекты меньших размеров, которые начинают крутиться вокруг них, образуя планетную систему (в нашем случае – Солнечную).

Вспыхивающие светила

Интересно, что в астрономии существует такое понятие, как «новые звёзды» – при этом речь идёт не о появлении новых небесных тел: на протяжении своего существования горячие небесные тела умеренной светимости периодически ярко вспыхивают, причём они настолько сильно начинают выделяться на небосводе, что люди в прежние времена считали, будто это рождаются новые звёзды.

В действительности анализ данных показал, что эти небесные светила существовали и раньше, но из-за вздутия поверхности (газообразной фотосферы) внезапно приобрели особую яркость, увеличив своё свечение в десятки тысяч раз, в результате чего создаётся впечатление, будто на небе появились новые звёзды. Возвращаясь к первоначальному уровню яркости, новые звёзды могут изменять свой блеск до 400 тыс. раз (при этом, если сама вспышка длится лишь несколько дней, их возврат к предыдущему состоянию нередко длится годами).

Как ориентироваться по звездам

Стоит отметить, что погодные условия значительно влияют на наблюдение. Например, облачное небо скрывает часть светил. Поэтому необходимо учитывать этот момент. Однако, бывает, что созерцание не планируется, а жизненно необходимо.

Впрочем наблюдатель или управляющий судном (космическим, морским или другим) преследует, преимущественно, две цели.

Звёзды над морем

Прежде всего они измеряют высоту объекта над горизонтом при помощи секстанта (специальный измерительный прибор). В результате получается линия его положения. Затем несколько таких линий пересекают на карте и уточняют местонахождения наблюдателя.

Секстант (инструмент)

Или, к примеру, можно использовать путеводные светила, определяя величины поправки компаса. Для этого проводят сравнение азимута звёздного тела и азимута, вычисленного с помощью компаса судна или корабля.

А вот выбор объекта, который будет ориентиром, базируется либо по их названию, либо по обозначению Байера. Причем расположение звёзд обозначается экваториальной системой координат. То есть их склонением и прямым восхождением (в навигации указывается звёздное дополнение).

Помимо светил возможно ориентирование по звездам и Луне, а также планетам. Например, по положению Марса, Венеры, Сатурна и Юпитера определяют местонахождение и направление.

Взаимодействие звезд во Вселенной

Стоит отметить, что светила участвуют в формировании звездных систем и галактик. Правда, для этого они взаимодействуют с другими космическими объектами. Например, звездные системы, как правило, могут содержать как минимум одну планету или луну, астероиды, кометы, пыль и др.

Космос

А вот галактика — это гигантская звездная система, содержащая миллиарды звезд, их скопления, газ и пыль, а также темную материю и планеты. Таким образом, она еще более масштабная и по составу, и соответственно, по взаимодействию между своими составляющими. Более того, галактик во Вселенной очень много. Значит звездных тел больше в миллиарды раз. Можно сказать, бесконечное множество.Вероятно, законы Вселенной поддерживают некий баланс или она продолжает расширяться. Хотя также возможно, что космических тел становится больше и в будущем они просто сольются. Ведь в космосе слияние или поглощение между объектами происходило и происходит даже сейчас.

Бесспорно, красоту нашей Вселенной не передать словами. Притом мы можем наблюдать лишь часть внеземного пространства. Но сияющее ночное небо притягивает человека испокон веков. Ну как можно не любоваться бездонной мглой со множеством мерцающих звездочек? Они призывно светят, намекая на тайны и загадки, которые скрыты в космосе, на то, что нам недосягаемо и недоступно. Но, безусловно, возбуждает желание узнать и изведать эти таинственные просторы. Иногда, напротив, наблюдение за звездами действует успокаивающее, давая понять, что мы не одни во Вселенной.

Старение звезды и изменение состава

Со временем термоядерные реакции внутри звезд постепенно изменяют их состав. Главной и самой простой реакцией синтеза, который протекает в большинстве звезд во Вселенной, и в нашем Солнце в том числе, является протон-протонный цикл. В нем четыре атома водорода сливаются воедино, образуя в итоге один атом гелия и очень большой выход энергии — до 98% общей энергии звезды.

Такой процесс называется еще «горением» водорода: в Солнце «сгорает» до 4 миллионов тонн водорода ежесекундно.

Изменение состава на примере Солнца

Количество гелия в ядре Солнца будет увеличиваться; соответственно, будет расти объем ядра звезды. Из-за этого увеличится площадь термоядерной реакции, а вместе с ней — интенсивность свечения и температура Солнца. Через 1 миллиард лет (в возрасте 5,6 млрд лет) энергия звезды вырастет на 10%. В возрасте 8 миллиардов лет (через 3 млрд лет от сегодняшнего дня) солнечное излучение составит 140% от современного.

Рост интенсивности протон-протонной реакции сильно отразится на составе звезды — водород, мало затронутый с момента рождения, станет сгорать куда быстрее. Нарушится баланс между оболочкой Солнца и его ядром — водородная оболочка станет расширяться, а гелиевое ядро, наоборот, сужаться. В возрасте 11 миллиардов лет сила излучения из ядра звезды станет слабее сжимающей его гравитации — греть ядро теперь станет именно растущее сжатие.

Существенные изменения в составе звезды произойдут еще через миллиард лет, когда температура и сжатие ядра Солнца вырастет настолько, что запустится следующая стадия термоядерной реакции — «горение» гелия.

В итоге реакции, атомные ядра гелия сначала сбиваются вместе, превращаясь в нестабильную форму бериллия, а затем в углерод и кислород. Сила этой реакции невероятно велика — когда будут зажигаться нетронутые островки гелия, Солнце будет вспыхивать до 5200 раз ярче, чем сегодня!

Во время этих процессов ядро Солнца будет продолжать накаляться, а оболочка расширится до границ орбиты Земли и значительно остынет — ибо чем больше площадь излучения, тем больше энергии теряет тело. Пострадает и масса светила: потоки звездного ветра будут уносить остатки гелия, водорода и новообразованных углерода с кислородом в далекий космос.

Так наше Солнце превратится в красного гиганта. Полностью завершится развитие светила тогда, когда оболочка звезды окончательно истощится, и останется только плотное, горячее и маленькое ядро — белый карлик. Оно медленно будет остывать миллиардами лет.

Изменение состава звезд-гигантов

Цепочка трансформации крупных звезд куда дольше: она доходит вплоть до самого железа. Создаются и элементы потяжелее. У таких звезд уже нет пути назад — они взорвутся сверхновой, оставив по себе черную дыру или нейтронную звезду.

Хотя углерод и кислород существуют в звезде одновременно, во время реакций синтеза они создают вещества, распределяющиеся на принципиально разных уровнях звезды.

Так, углерод порождает легкие вещества, вроде неона, натрия или магния.

Кислород же создает тяжелые неметаллы, наподобие серы или фосфора, или неплотные металлы, как вот алюминий. А вместе с азотом они участвуют в CNO-цикле горения водорода — основном термоядерном процессе в больших звездах Главной последовательности.

Виды звёзд

Звёзды различают по таким параметрам, как масса, размер и светимость. Цвет их изменяется от красного до голубого. И чем ближе к голубому — тем выше температура космического объекта.

Красный (класс M) — 2000-3500 градусов.Оранжевый (класс K) — от 3500 до 5000 градусов.Жёлтый (класс G) — 5-6 тысяч градусов. К данному типу относится и наше Солнце.Жёлто-белый (класс F) — от 6000 К до 7500 К.Белый (класс A) — 7500 К — 10000 К.Бело-голубой (класс B) — 10-30 тысяч градусов.Голубой (класс O) — 30-60 тысяч К.

Коричневый карлик. Это тип звёзд, которые на излучение тратят больше энергии, чем получают в результате ядерной реакции. Их температура около 300-500 градусов.

Белый карлик. Практически все звёзды завершают свою эволюцию превращением в белых карликов.В конце своей жизни они начинают сжиматься, уменьшаясь в сотни раз от своего первоначального размера. При этом они обретают плотность, превосходящую плотность воды в миллион раз. Однако, теряют источники энергии и постепенно остывают. Такую участь ждёт и наше Солнце (но сейчас его относят к типу жёлтых карликов).

Красный гигант. Тип звёзд, имеющих относительно низкую температуру (3-5 тысяч градусов), но при этом обладающие огромной светимостью.

Типа Вольфа — Райе. Класс звёзд, обладающих очень высокой температурой и светимостью.

Сверхновые. Это те звёзды, которые закачивают свой цикл взрывным процессом. Если в спектре такой вспышки присутствуют линии водорода — это Сверхновая 2 типа, если нет — 1 типа.

Новые. Это Сверхновые, вспышка которых гораздо слабее — не такая яркая, и выделяет не так много энергии.

Гиперновые. Это очень большие Сверхновые.Или, другими словами, Гиперновые — это очень большие и тяжёлые звёзды (более 100 масс Солнца), оканчивающие свою эволюцию взрывом.

Яркие голубые переменные (ЯГП). Очень яркие гигантские звёзды, ещё и пульсирующие при этом. Их сияние может быть, представьте только, в миллион раз сильнее солнечного.
Полагают, это объясняется тем, что звёзды такого типа сбрасывают излишки энергии — отсюда и такое яркое сияние.

Ультраяркие рентгеновские источники. Это тип звёзд, имеющих очень сильное излучение, но только в рентгеновском диапазоне.

Нейтронные звёзды. Это тип звёзд, сжатие Ядра которых не прекращается до тех пор, пока практически все частицы не превратятся в нейтроны.Масса таких звёзд превосходит массу Солнца в полтора — три раза, но их диаметр при этом около 10 км. Это насколько же высокой плотностью они обладают?!

Двойные звезды

Мы привыкли, что наша система освещается исключительно одной звездой. Но есть и другие системы, в которых две звезды на небе вращаются по орбите относительно друг друга. Если точнее, только 1/3 звезд, похожих на Солнце, располагаются в одиночестве, а 2/3 – двойные звезды. Например, Проксима Центавра – часть множественной системы, включающей Альфа Центавра А и B. Примерно 30% звезд в Млечной Пути многократные.

Двойная звезда в Большой Медведице

Этот тип формируется, когда две протозвезды развиваются рядом. Одна из них будет сильнее и начнет влиять гравитацией, создавая перенос массы. Если одна предстанет в виде гиганта, а вторая – нейтронная звезда или черная дыра, то можно ожидать появления рентгеновской двойной системы, где вещество невероятно сильно нагреется – 555500 °C. При наличии белого карлика, газ из компаньона может вспыхнуть в виде новой. Периодически газ карлика накапливается и способен мгновенно слиться, из-за чего звезда взорвется в сверхновой типа I, способной затмить галактику своим сиянием на несколько месяцев.

Классификация

Разумеется, нейтронные звезды, как и любые другие объекты, делятся на виды. Хотя учёные установили, что они могут за свою жизнь изменяться.

В основном на их развитие влияют скорость вращения вокруг своей оси и магнитное поле. Так как собственное вращение со временем тормозится, а магнитное поле слабеет, то другие свойства и процессы также меняются.

Нейтронные звезды, их типы и примеры

Радиопульсары или, по-другому, эжекторы обладают высокой вращательной скоростью и сильными магнитными полями. Они, так сказать, выталкивают заряженные релятивистские частицы, излучаемые в радиодиапазоне. Кстати, первым из данного вида звёздных тел открыли радиопульсар PSR B1919+21.

Пульсар

Пропеллеры, напротив, не выделяют заряженные частицы. Однако из-за высокой скорости вращения и силы магнитной области вещество поддерживается над поверхностью. Правда, данный тип светил сложно обнаружить и он мало изучен.

Рентгеновский пульсар или аккретор отличается тем, что в нём вещество попадает на поверхность. Потому как небольшой темп оборотов позволяет ему спускаться, но уже в состоянии плазмы. В свою очередь, она нагревается благодаря магнитному полю. Как следствие, это вещество ярко светится в рентгеновском диапазоне.

А вот пульсация возникает в результате вращения, при котором происходит затмение горячей материи. К примеру, первый аккретор — Центавр X-3 не только имел пульсацию своей яркости, но и постоянно менял период колебаний.

Рентгеновский пульсар

Георотатор имеет малую вращательную скорость, что вызывает приращение массы тела с помощью силы гравитации вещества (газа) из окружающего пространства. Такой процесс, между прочим, называется аккрецией.

Несмотря на это, границы области вокруг небесного тела позволяют магнитному полю удерживать плазму до того, как она окажется на поверхности.

Георотатор

Эргозвезда, на самом деле, представляет собой теоретически возможный тип. По мнению учёных, такой объект может сформироваться при слиянии или столкновении нейтронных звёзд.

Предполагают, что в ней имеется эргосфера, то есть область пространства-времени, расположенная рядом с чёрной дырой. Она, по идее, лежит где-то между горизонтом событий и пределом статичности. Проще говоря, подобные объекты имеют место быть, но это не точно.

2000, чтобы представить

Космический объектив MACS J1720 + 35 помогает Хабблу найти далекую сверхновую.

SN 2003fg была обнаружена в формирующейся галактике в 2003 году. Появление этой сверхновой звезды изучалось в «реальном времени», и это поставило несколько основных физических вопросов, поскольку она кажется более массивной, чем позволяет предел Чандрасекара .

Впервые наблюдаемая в сентябре 2006 года сверхновая SN 2006gy , которая произошла в галактике под названием NGC 1260 (240 миллионов световых лет от нас), является самой большой и, до подтверждения светимости SN 2005ap в октябре 2007 года, самой яркой сверхновой из когда-либо наблюдавшихся. . Взрыв был по крайней мере в 100 раз ярче, чем любая ранее наблюдаемая сверхновая, при этом звезда-прародитель оценивается в 150 раз более массивной, чем Солнце. Хотя у нее были некоторые характеристики сверхновой типа Ia, в спектре был обнаружен водород. Считается, что SN 2006gy — вероятный кандидат на сверхновую с парной нестабильностью . SN 2005ap, открытый Робертом Куимби, который также открыл SN 2006gy, была примерно в два раза ярче, чем SN 2006gy, и примерно в 300 раз ярче, чем обычная сверхновая типа II.

Вмещающие галактики сверхновых, богатых кальцием.

21 мая 2008 года астрономы объявили, что они впервые засняли на камеру сверхновую в тот момент, когда она взрывалась. Случайно вспышка рентгеновского излучения была замечена при наблюдении за галактикой NGC 2770 , находящейся на расстоянии 88 миллионов световых лет от Земли, и множество телескопов были нацелены в этом направлении как раз вовремя, чтобы запечатлеть то, что было названо SN 2008D . «Это в конечном итоге подтвердило, что большой рентгеновский взрыв ознаменовал рождение сверхновой», — сказала Алисия Содерберг из Принстонского университета .

Одна из многих астрономов-любителей, ищущих сверхновые, Кэролайн Мур , член исследовательской группы обсерватории Пакетта, обнаружила сверхновую SN 2008ha в конце ноября 2008 года. В возрасте 14 лет она была объявлена ​​самым молодым человеком, когда-либо обнаружившим сверхновую. Однако в январе 2011 года 10-летняя Кэтрин Аврора Грей из Канады, как сообщалось, открыла сверхновую, что сделало ее самой молодой из всех, кто когда-либо обнаружил сверхновую. Мистер Грей, ее отец и друг заметили SN 2010lt , сверхновую звезду 17 величины в галактике UGC 3378 в созвездии Камелопардалис , примерно в 240 миллионах световых лет от нас.

Сверхновая SN 2012cg в спиральной галактике NGC 4424 .

В 2009 году исследователи обнаружили нитраты в ледяных кернах Антарктиды на глубинах, соответствующих известным сверхновым в 1006 и 1054 годах нашей эры, а также примерно в 1060 году нашей эры. Нитраты, по-видимому, образовались из оксидов азота, созданных гамма-лучами сверхновых. Этот метод должен быть в состоянии обнаружить сверхновые звезды, появившиеся несколько тысяч лет назад.

15 ноября 2010 года астрономы с помощью рентгеновской обсерватории Чандра НАСА объявили, что, рассматривая остаток SN 1979C в галактике Messier 100 , они обнаружили объект, который может быть молодой 30-летней черной дырой . НАСА также отметило возможность того, что этот объект может быть вращающейся нейтронной звездой, производящей ветер из частиц высокой энергии.

24 августа 2011 года автоматическая съемка Palomar Transient Factory обнаружила новую сверхновую типа Ia ( SN 2011fe ) в галактике Вертушка (M101) вскоре после ее появления . Он находится всего в 21 миллионе световых лет и обнаружен так рано после начала события, что позволит ученым узнать больше о ранних разработках этих типов сверхновых.

16 марта 2012 года в M95 была обнаружена сверхновая типа II , обозначенная как SN 2012aw.

22 января 2014 года студенты обсерватории Лондонского университета заметили взрывающуюся звезду SN 2014J в соседней галактике M82 (Сигарная галактика). Находящаяся на расстоянии около 12 миллионов световых лет сверхновая — одна из ближайших к наблюдению за последние десятилетия.

Через несколько недель после того, как в январе 2018 года в спиральной галактике NGC 2525 взорвалась звезда, космический телескоп Хаббл НАСА сделал последовательные фотографии образовавшейся сверхновой типа 1a , обозначенной как SN 2018gv, в течение почти года .