7 самых мощных вспышек во вселенной

Гиперновые взрывы

Гиперновыми называют вспышки, энергия которых на несколько порядков превышает энергию типичных сверхновых. То есть, по сути они гиперновые являются очень яркими сверхновыми.

Как правило, гиперновым считается взрыв сверхмассивных звезд, также называемых гипергигантами. Масса таких звезд начинается с 80 нередко превышает теоретический предел 150 солнечных масс. Также существуют версии, что гиперновые звезды могут образовываться в ходе аннигиляции антиматерии, образованию кварковой звезды или же столкновением двух массивных звезд.

Сверхновая звезда GRB 080913

Примечательны гиперновые тем, что они являются основной причиной, пожалуй, самых энергоёмких и редчайших событий во Вселенной – гамма-всплесков. Продолжительность гамма всплесков составляет от сотых секунд до нескольких часов. Но чаще всего они длятся 1-2 секунду. За эти секунды они испускают энергию, подобную энергии Солнца за все 10 миллиардов лет её жизни! Природа гамма-всплесков до сих пор по большей части остаётся под вопросом.

История ранних веков

Взрыв сверхновой, образовавший остаток сверхновой звезды Вела, вероятнее всего, произошел 10 000–20 000 лет назад .

Самая ранняя из возможных сверхновых, известная как HB9 , могла быть замечена и зарегистрирована неизвестными индийскими наблюдателями в4500 ± 1000 г.  до н .
Э.

В 185 году нашей эры астрономы зафиксировали появление на небе яркой звезды и заметили, что она исчезла с неба через восемь месяцев. Было замечено, что он сверкает, как звезда, а не движется по небу, как комета . Эти наблюдения согласуются с появлением сверхновой, и это считается старейшим подтвержденным документом человечества о событии сверхновой. SN 185, возможно, также был записан в римской литературе, хотя никаких записей не сохранилось. Предполагается, что газовая оболочка RCW 86 является пережитком этого события, и недавние рентгеновские исследования показывают хорошее соответствие ожидаемому возрасту. Это также было записано в Книге Поздней Хань. который рассказывал историю Китая с 25 по 220 год нашей эры.

В 393 году китайцы зафиксировали появление еще одной «гостевой звезды» , SN 393 , в современном созвездии Скорпиона . Дополнительные неподтвержденные сверхновые события могли наблюдаться в 369 г. н.э., 386 г. н.э. , 437 г. н.э., 827 г. н.э. и 902 г. н.э. Однако они еще не были связаны с остатком сверхновой и поэтому остаются только кандидатами. За период около 2000 лет китайские астрономы зарегистрировали в общей сложности двадцать таких предполагаемых событий, включая более поздние взрывы, отмеченные исламскими, европейскими и, возможно, индийскими и другими наблюдателями.

Сверхновая SN 1006 появилась в южном созвездии волчанки в 1006 году нашей эры. Это была самая яркая зарегистрированная звезда, когда-либо появлявшаяся на ночном небе, и ее присутствие было отмечено в Китае, Египте , Ираке , Италии, Японии и Швейцарии . Это также могло быть отмечено во Франции, Сирии и Северной Америке. Египетский астролог Али ибн Ридван дал яркость этой звезды равной четверти яркости Луны. Современные астрономы обнаружили слабый остаток этого взрыва и определили, что он находился всего в 7100 световых годах от Земли.

Сверхновая SN 1054 была еще одним широко наблюдаемым событием: астрономы зафиксировали ее появление в 1054 году нашей эры. Это могло также быть зарегистрировано, наряду с другими сверхновыми, предками пуэблоанами в современном Нью-Мексико как петроглиф в форме четырехконечной звезды . Этот взрыв произошел в созвездии Тельца , где образовался остаток Крабовидной туманности . На пике светимость SN 1054 могла быть в четыре раза ярче Венеры , она оставалась видимой при дневном свете в течение 23 дней и была видна в ночном небе в течение 653 дней.

Меньше записей о сверхновой SN 1181 , которая произошла в созвездии Кассиопея чуть более чем через столетие после SN 1054. Однако это было отмечено китайскими и японскими астрономами. Пульсар 3C58 может быть звездной реликвия этого события.

Датский астроном Тихо Брага была отмечена за его тщательные наблюдения ночного неба с его обсерватории на острове Hven . В 1572 году он отметил появление новой звезды также в созвездии Кассиопеи. Эта сверхновая, позже названная SN 1572 , была связана с остатком в 1960-х годах.

Распространенной верой в Европе в этот период была аристотелевская идея, что космос за пределами Луны и планет неизменен , поэтому наблюдатели утверждали, что это явление было чем-то в атмосфере Земли. Однако Тихо заметил, что объект оставался неподвижным от ночи к ночи, никогда не меняя своего параллакса, поэтому он должен лежать далеко. Он опубликовал свои наблюдения в небольшой книге De nova et nullius aevi memoria prius visa stella ( латинское название «Относительно новой и ранее невидимой звезды») в 1573 году. Именно из названия этой книги происходит современное слово nova для обозначения катаклизмических переменных звезд. выводится.

Многоволновое рентгеновское изображение из остатка от Kepler «s Supernova, SN 1604 . ( Рентгеновская обсерватория Чандра )

Самой последней сверхновой, наблюдаемой в галактике Млечный Путь, была SN 1604 , которая наблюдалась 9 октября 1604 года. Несколько человек, в том числе Йоханнес ван Хек , отметили внезапное появление этой звезды, но именно Иоганн Кеплер стал известен тем, что его систематическое изучение самого объекта. Он опубликовал свои наблюдения в работе De Stella nova in pede Serpentarii .

Галилей , как и Тихо до него, тщетно пытался измерить параллакс этой новой звезды, а затем выступил против аристотелевского взгляда на неизменные небеса. Остаток этой сверхновой был идентифицирован в 1941 году в обсерватории Маунт Вильсон .

Крабовидная туманность

Ни один космический объект не дал астрономам столько ценнейшей информации, как относительно небольшая Крабовидная туманность, наблюдаемая в созвездии Тельца и состоящая из газового диффузного вещества, разлетающегося с большой скоростью. Эта туманность, являющаяся остатком сверхновой, наблюдавшейся в 1054 году, стала первым галактическим объектом, с которым был отождествлен источник радиоизлучения. Оказалось, что характер радиоизлучения ничего общего с тепловым не имеет: его интенсивность систематически возрастает с длиной волны. Вскоре удалось объяснить и природу этого явления. В остатке сверхновой должно быть сильное магнитное поле, которое удерживает созданные ею космические лучи (электроны, позитроны, атомные ядра), имеющие скорости, близкие к скорости света. В магнитном поле они излучают электромагнитную энергию узким пучком в направлении движения. Обнаружение нетеплового радиоизлучения у Крабовидной туманности подтолкнуло астрономов к поиску остатков сверхновых именно по этому признаку.

Особенно мощным источником радиоизлучения оказалась туманность, находящаяся в созвездии Кассиопеи, на метровых волнах поток радиоизлучения от нее в 10 раз превышает поток от Крабовидной туманности, хотя она и значительно дальше последней. В оптических же лучах эта быстро расширяющаяся туманность очень слаба. Полагают, что туманность в Кассиопее это остаток вспышки сверхновой, имевшей место около 300 лет назад.

Характерное для старых остатков сверхновых радиоизлучение показала и система волокнистых туманностей в созвездии Лебедя. Радиоастрономия помогла отыскать еще много других нетепловых радиоисточников, которые оказались остатками сверхновых разного возраста. Таким образом, был сделан вывод, что остатки вспышек сверхновых, случившихся даже десятки тысяч лет назад, выделяются среди других туманностей своим мощным нетепловым радиоизлучением.

Как уже говорилось, Крабовидная туманность стала первым объектом, у которого было обнаружено рентгеновское излучение. В 1964 году удалось обнаружить, что источник рентгеновского излучения, исходящего из нее, протяженный, хотя его угловые размеры в 5 раз меньше угловых размеров самой Крабовидной туманности. Из чего был сделан вывод, что рентгеновское излучение испускает не звезда, некогда вспыхнувшая как сверхновая, а сама туманность.

1970–1999

Современная стандартная модель взрывов сверхновых типа Ia основана на предложении Уилана и Ибена в 1973 году и основана на сценарии массопереноса к вырожденной звезде-компаньону. В частности, кривая блеска SN1972e в NGC 5253 , которая наблюдалась в течение более года, отслеживалась достаточно долго, чтобы обнаружить, что после своего широкого «горба» яркости сверхновая исчезает с почти постоянной скоростью примерно 0,01 звездной величины на единицу. день. В переводе на другую систему единиц это почти то же самое, что скорость распада кобальта- 56 ( 56 Co), период полураспада которого составляет 77 дней. Модель вырожденного взрыва предсказывает образование около солнечной массы никеля -56 ( 56 Ni) взрывающейся звездой. 56 Ni распадается с периодом полураспада 6,8 дней до 56 Co, и при распаде никеля и кобальта обеспечивает энергия , излучаемая прочь сверхновой в конце своей истории. Согласие как в общем производстве энергии, так и в скорости затухания между теоретическими моделями и наблюдениями 1972e привело к быстрому принятию модели вырожденного взрыва.

Наблюдая кривые блеска многих сверхновых типа Ia, было обнаружено, что они имеют общую пиковую светимость. Измеряя яркость этих событий, можно с хорошей точностью оценить расстояние до их родительской галактики. Таким образом, эта категория сверхновых стала очень полезной в качестве стандартной свечи для измерения космических расстояний. В 1998 году поиск сверхновых с высоким Z и космологический проект сверхновых обнаружили, что самые далекие сверхновые типа Ia выглядят более тусклыми, чем ожидалось. Это стало свидетельством того, что расширение Вселенной может ускоряться .

Хотя с 1604 года в Млечном Пути не наблюдались сверхновые, похоже, что сверхновая взорвалась в созвездии Кассиопеи около 300 лет назад, примерно в 1667 или 1680 году. Остаток этого взрыва, Кассиопея А , сильно скрыт межзвездной пылью. , возможно, поэтому он не сделал заметного появления. Однако его можно наблюдать и в других частях спектра, и в настоящее время это самый яркий радиоисточник за пределами нашей Солнечной системы.

Сверхновая 1987 г. Остаток около центра.

В 1987 году Сверхновая 1987A в Большом Магеллановом Облаке наблюдалась через несколько часов после ее начала. Это была первая сверхновая, обнаруженная по испусканию нейтрино, и первая сверхновая, наблюдаемая во всех полосах электромагнитного спектра . Относительная близость этой сверхновой позволила провести подробные наблюдения и предоставила первую возможность современным теориям образования сверхновой быть проверенной на основе наблюдений.

Скорость открытия сверхновых неуклонно росла на протяжении двадцатого века. В 1990-х годах было запущено несколько автоматизированных программ поиска сверхновых. Программа поиска сверхновых в обсерватории Лойшнера была начата в 1992 году в обсерватории Лойшнера . В том же году к нему присоединилась программа телескопа с автоматическим формированием изображений Беркли. На смену им в 1996 году пришел телескоп с автоматическим формированием изображений Кацмана в обсерватории Лик , который в основном использовался для поиска сверхновых в обсерватории Лика (LOSS). К 2000 году программа Lick привела к открытию 96 сверхновых, что сделало ее самой успешной программой поиска сверхновых в мире.

В конце 1990-х было высказано предположение, что недавние остатки сверхновых могут быть обнаружены путем поиска гамма-лучей от распада титана-44 . Его период полураспада составляет 90 лет, и гамма-лучи могут легко пересекать галактику, так что это позволяет нам видеть любые остатки прошлого тысячелетия или около того. Были обнаружены два источника: ранее обнаруженный остаток Кассиопеи А и остаток RX J0852.0-4622 , который только что был обнаружен, перекрывая остаток сверхновой звезды Вела.

В 1999 году было замечено, что звезда внутри IC 755 взорвалась как сверхновая и получила название SN 1999an.

Этот остаток (RX J0852.0-4622) был обнаружен перед (по всей видимости) более крупным остатком сверхновой звезды Vela . Гамма-лучи от распада титана-44 показали, что он должен был взорваться сравнительно недавно (возможно, около 1200 г. н.э.), но исторических свидетельств об этом нет. Поток гамма-лучей и рентгеновских лучей указывает на то, что сверхновая была относительно близко к нам (возможно, 200 парсеков или 600 световых лет). Если так, то это удивительное событие, потому что сверхновые на расстоянии менее 200 парсеков, по оценкам, случаются реже одного раза в 100000 лет.

Как получаются новые сверхновые звезды

По данным учёных, внутри светила происходит резкое повышение массы вещества, которое участвует в термоядерных реакциях. Проще говоря, возникает взрыв. Однако такое явление случается в кратных звёздных системах. А вот, например, звезда главной последовательности (её процессы) находится в равновесии и не может спровоцировать вспышку.

Какая звезда превращается в сверхновую?

В действительности, взрыв сверхновой звезды имеет природу отличающуюся от других вспышек.Как оказалось, линии водорода в их спектрах отсутствуют. А значит в таких звёздных телах на этапе, предшествующему вспыхиванию, его очень мало. Однако масса вырабатываемого ими вещества довольно высокая. Она, в основном, состоит из углерода, кислорода и другие тяжёлых элементов.

Кроме того, при спектральном анализе наблюдается смещение линии кремния. Что показывает на происходящие во время выброса ядерные реакции.

Итак, возникает предположение о том, что в прошлом сверхновая звезда была карликом. Вероятнее всего, белым углеродно-кислородным представителем.

Белый карлик

Наблюдение за сверхновыми

Сверхновая SN 1987A

Сверхновые взрывы являются крайне редкими явлениями. В нашей галактике, содержащей более сотни миллиардов звёзд, происходит всего лишь несколько вспышек за столетие. Согласно летописным и средневековым астрономическим источникам, за последние две тысячи лет были зафиксированы лишь шесть сверхновых, видимых невооруженным глазом. Современным астрономам ни разу не доводилось наблюдать сверхновых в нашей галактике. Наиболее ближайшая произошла в 1987 в Большом Магеллановым Облаке, в одном из спутников Млечного Пути. Каждый год учёные наблюдают до 60 сверхновых, происходящих в других галактиках.

Именно из-за этой редкости сверхновые практически всегда наблюдаются уже в момент вспышки. События, предшествующие ей почти никогда не наблюдались, поэтому природа сверхновых до сих пор во многом остаётся загадочной. Современная наука не способна достаточно точно спрогнозировать сверхновые. Любая звезда-кандидат способна вспыхнуть лишь через миллионы лет. Наиболее интересна в этом плане Бетельгейзе, которая имеет вполне реальную возможность озарить земное небо на нашем веку.

Белый карлик, «воскрешающий» себя за счет звезды-компаньона

Питаться энергией другого объекта это вампиризм?

Космическое рентгеновское излучение может быть мягким и жестким. Для мягкого требуется всего лишь нагретый до нескольких сотен тысяч градусов газ. Жесткое требует настоящих космических «печей», разогретых до десятков миллионов градусов.

Оказывается, что есть еще и «супермягкое» рентгеновское излучение. Его могут создавать белые карлики, ну или по крайней мере один, о котором сейчас пойдет речь. Этим объектом является ASASSN-16oh. Изучив его спектр, ученые обнаружили наличие низкоэнергетических фотонов мягкого рентгеновского диапазона. Сначала ученые предположили, что причиной этого являются непостоянные термоядерные реакции, которые могут запускаться на поверхности белого карлика, подпитываясь водородом и гелием, притянутыми от звезды-компаньона. Такие реакции должны начинаться внезапно, ненадолго охватывая всю поверхность карлика, и снова затихать. Однако дальнейшие наблюдения за ASASSN-16oh подвели ученых к другому предположению.

Согласно предложенной модели, партнером белого карлика в ASASSN-16oh является рыхлый красный гигант, от которого тот интенсивно перетягивает вещество. Это вещество сближается с поверхностью карлика, закручиваясь вокруг него по спирали и раскаляется. Именно его рентгеновское излучение и было зарегистрировано учеными. Перенос массы в системе происходит нестабильно и чрезвычайно быстро. В конечном итоге, белый карлик «наестся» и озарится сверхновой, погубив при этом и свою звезду-компаньона.

Наблюдение

Остаток сверхновой N103B, сделанный космическим телескопом Хаббла.

В отличие от других типов сверхновых, сверхновые типа Ia обычно встречаются во всех типах галактик, включая эллиптические. Они не отдают предпочтения регионам нынешнего звездообразования. Поскольку белые карлики формируются в конце периода эволюции звезды на главной последовательности, такая долгоживущая звездная система могла уйти далеко от региона, где она первоначально сформировалась. После этого тесная двойная система может провести еще миллион лет в стадии массопереноса (возможно, образуя стойкие вспышки новых звезд), прежде чем созреют условия для возникновения сверхновой типа Ia.

Давней проблемой в астрономии была идентификация прародителей сверхновых. Прямое наблюдение за прародителем могло бы дать полезные ограничения для моделей сверхновых. По состоянию на 2006 год поиск такого прародителя велся более века. Наблюдение сверхновой SN 2011fe дало полезные ограничения. Предыдущие наблюдения с помощью космического телескопа Хаббла не показали звезд на месте события, тем самым исключив красный гигант в качестве источника. Было обнаружено, что расширяющаяся плазма от взрыва содержала углерод и кислород, поэтому вероятно, что ее прародителем был белый карлик, в основном состоящий из этих элементов. Точно так же наблюдения близлежащей SN PTF 11kx, обнаруженной 16 января 2011 г. (UT) Паломарской переходной фабрикой (PTF), приводят к выводу, что этот взрыв является результатом единственного вырожденного прародителя с компаньоном красного гиганта, таким образом предполагая наличие не существует единственного предшественника пути к SN Ia. Прямые наблюдения за прародителем PTF 11kx были опубликованы в выпуске журнала Science от 24 августа и подтверждают этот вывод, а также показывают, что звезда-прародитель испытывала периодические извержения новых до появления сверхновой — еще одно удивительное открытие. Однако более поздний анализ показал, что околозвездное вещество слишком массивно для сценария однократного вырождения и лучше соответствует сценарию вырождения ядра.

Кривая блеска

Этот график зависимости светимости (относительно Солнца, L ) от времени показывает характерную кривую блеска для сверхновой типа Ia. Пик в первую очередь связан с распадом никеля (Ni), а на более поздней стадии — кобальтом (Co).

Сверхновые типа Ia имеют характерную кривую блеска , их график светимости как функцию времени после взрыва. Вблизи времени максимальной светимости в спектре присутствуют линии элементов промежуточной массы от кислорода до кальция ; это основные составляющие внешних слоев звезды. Спустя несколько месяцев после взрыва, когда внешние слои расширились до точки прозрачности, в спектре преобладает свет, излучаемый материалом вблизи ядра звезды, тяжелыми элементами, синтезированными во время взрыва; наиболее заметно изотопы, близкие к массе железа ( элементы железного пика ). Радиоактивный распад из никеля-56 через кобальт-56 до железа-56 производит высокоэнергетические фотоны , которые доминируют выходную энергию эжекта на среднем до позднего времени.

Использование сверхновых типа Ia для измерения точных расстояний было впервые предложено чилийскими и американскими астрономами в Обзоре сверхновых звезд Калана / Тололо . В серии статей 1990-х годов обзор показал, что, хотя сверхновые типа Ia не все достигают одинаковой пиковой яркости, единственный параметр, измеренный по кривой блеска, можно использовать для корректировки неокрашенных сверхновых типа Ia до стандартных значений свечей. Первоначальная поправка к стандартному значению свечи, известная как отношение Филлипса,
показала, что эта группа может измерять относительные расстояния с точностью до 7%. Причина такой однородности пиковой яркости связана с количеством никеля-56, производимого в белых карликах, предположительно взрывающихся вблизи предела Чандрасекара.

Сходство профилей абсолютной светимости почти всех известных сверхновых типа Ia привело к их использованию в качестве вторичных стандартных свечей во внегалактической астрономии. Улучшенная калибровка шкалы переменных расстояний до цефеид и прямые геометрические измерения расстояний до NGC 4258 по динамике мазерного излучения в сочетании с диаграммой Хаббла расстояний до сверхновых типа Ia привели к улучшенному значению постоянной Хаббла .

В 1998 году наблюдения далеких сверхновых типа Ia показали неожиданный результат, заключающийся в том, что Вселенная, похоже, подвергается ускоренному расширению . Впоследствии за это открытие три члена из двух команд были удостоены Нобелевских премий.

Общие сведения

Образование сверхновых типа Ia

Сверхновые типа Ia представляют собой звезды, вернее – вспышки света, которые являются результатом взрыва давно потухшего космического светила – белого карлика. В предыдущем предложении мы несколько упростили определение белого карлика. Если говорить строго по-научному, этот объект представляет собой выгоревшую звезду, у которой прекратились термоядерные реакции. Большинство звезд во Вселенной именно таким образом заканчивают свой жизненный цикл. Получается, белый карлик – это венец эволюции звезды, массой примерно, как у нашего Солнца.

Так считалось до недавнего времени, пока учеными не были обнаружены сверхновые типа Ia. Сверхновые типа Ia или вспышка сверхновой – условное название физико-химической реакции внутри белого карлика, которое приводит к достаточно мощному его взрыву. Во время этого взрыва выделяется достаточно большое количество энергии. Кроме того, светимость звезды одновременно увеличивается в несколько тысяч раз.

Если обычная сверхновая возникает вследствие взрыва одинокого белого карлика, из-за процессов, происходящих у него внутри, то последние научные теории говорят о том, что сверхновые типа Ia являются результатом слияния двух белых карликов. Два белых карлика находящиеся рядом – достаточно редкое явление в космосе. Тем не менее, во Вселенной такие объекты встречаются. Чаще всего это остатки двойных звездных систем, гравитационно соединенные друг с другом.

Модель консенсуса

Спектр SN 1998aq , сверхновой типа Ia, через сутки после максимума света в полосе B

Сверхновая типа Ia является подкатегорией в схеме классификации сверхновых Минковского – Цвикки, разработанной немецко-американским астрономом Рудольфом Минковски и швейцарским астрономом Фрицем Цвикки . Есть несколько способов, с помощью которых могут образоваться сверхновые этого типа, но они имеют общий основной механизм. Теоретические астрономы долгое время считали, что этого типа сверхновой является белый карлик , и эмпирические доказательства этого были обнаружены в 2014 году, когда в галактике Мессье 82 наблюдалась сверхновая типа Ia . Когда медленно вращающийся углерод — кислород белый карликовый аккрецирует вещества из компаньона, он может превышать предел Чандрасекара около 1,44  М , за которой он больше не может поддерживать свой вес с давлением электронов вырождения. В отсутствие уравновешивающего процесса белый карлик коллапсирует, образуя нейтронную звезду , в вызванном аккрецией неэективном процессе, как это обычно происходит в случае белого карлика, который в основном состоит из магния , неона и кислорода. .

Однако в настоящее время астрономы, моделирующие взрывы сверхновых звезд типа Ia, считают, что этот предел никогда не достигается и коллапс никогда не начинается. Вместо этого увеличение давления и плотности из-за увеличения веса повышает температуру ядра, и когда белый карлик приближается примерно к 99% предела, наступает период конвекции , продолжающийся примерно 1000 лет. В какой-то момент на этой стадии кипения рождается фронт пламени дефлаграции , питаемый плавлением углерода . Детали возгорания до сих пор неизвестны, включая местоположение и количество точек, где начинается пламя. Вскоре после этого начинается синтез кислорода , но это топливо не расходуется так же полно, как углерод.

Остаток сверхновой звезды G299 типа Ia .

Как только начинается синтез, температура белого карлика повышается. Главная последовательность звезд поддерживается можно расширить и охладить , которое автоматически регулирует увеличение тепловой энергии. Однако давление вырождения не зависит от температуры; белые карлики не могут регулировать температуру так, как обычные звезды, поэтому они уязвимы для реакций неконтролируемого синтеза. Вспышка резко ускоряется, отчасти из-за неустойчивости Рэлея – Тейлора и взаимодействия с турбулентностью . До сих пор остается предметом серьезных споров, трансформируется ли эта вспышка в сверхзвуковую детонацию от дозвуковой горения.

Независимо от точных деталей того, как воспламеняется сверхновая, общепринято считать, что значительная часть углерода и кислорода в белом карлике расплавляется на более тяжелые элементы в течение всего нескольких секунд, с сопутствующим высвобождением энергии, увеличивающим внутреннее пространство. температура до миллиардов градусов. Выделяемая энергия (1–2 × 10 44  Дж ) более чем достаточно, чтобы развязать звезду; то есть отдельные частицы, составляющие белый карлик, получают достаточно кинетической энергии, чтобы разлететься друг от друга. Звезда яростно взрывается и выпускает ударную волну, в которой вещество обычно выбрасывается со скоростью порядка5 000–20 000 км / с , примерно 6% скорости света . Энергия, выделяющаяся при взрыве, также вызывает резкое увеличение яркости. Типичная визуальная абсолютная величина сверхновых типа Ia составляет M v  = -19,3 (примерно в 5 миллиардов раз ярче Солнца) с небольшими вариациями.

Теория сверхновых этого типа аналогична теории новых звезд , в которых белый карлик срастает материю медленнее и не приближается к пределу Чандрасекара. В случае новой звезды падающее вещество вызывает поверхностный взрыв с синтезом водорода, который не разрушает звезду.

Сверхновые типа Ia отличаются от сверхновых типа II , которые вызваны катастрофическим взрывом внешних слоев массивной звезды при коллапсе ее ядра, вызванном высвобождением гравитационной потенциальной энергии посредством излучения нейтрино .

Влияние на нашу планету

Маловероятно, что сверхновые могут нести угрозу современному человечеству и каким-либо образом повлиять на нашу планету. Даже взрыв Бетельгейзе лишь осветит наше небо на несколько месяцев. Однако, безусловно, они решающим образом влияли на нас в прошлом. Примером тому служит первое из пяти массовых вымираний на Земле, произошедших 440 млн. лет назад. По одной из версий причиной этому вымиранию послужил гамма-вспышка, произошедшая в нашей Галактике.

Более примечательна совсем иная роль сверхновых. Как уже отмечалось, именно сверхновые создают химические элементы, необходимые для появления углеродной жизни. Земная биосфера не была исключением. Солнечная система сформировалось в газовом облаке, которые содержали осколки былых взрывов. Получается, мы все обязаны сверхновым своим появлением.

Более того, сверхновые и в дальнейшем влияли на эволюцию жизни на Земле. Повышая радиационный фон планеты, они заставляли организмы мутировать. Не стоит также забывать про крупные вымирания. Наверняка сверхновые не единожды «вносили коррективы» в земную биосферу. Ведь не будь тех глобальный вымираний, на Земле бы сейчас господствовали совсем другие виды.

Масштабы звездных взрывов

Чтобы наглядно понять, какой энергией обладают сверхновые взрывы, обратимся к уравнению эквивалента массы и энергии. Согласно нему, в каждом грамме материи заключено колоссальное количество энергии.  Так 1 грамм вещества эквивалентен взрыву атомной бомбы, взорванной над Хиросимой. Энергия царь-бомбы эквивалента трём килограммам вещества.

Каждую секунду ходе термоядерных процессов в недрах Солнца 764 миллиона тонн водорода превращается в 760 миллион тонн гелия.   Т.е. каждую секунду Солнце излучает энергию, эквивалентную 4 млн. тоннам вещества. Лишь одна двухмиллиардная часть всей энергии Солнца доходит до Земли, это эквивалентно двум килограммам массы. Поэтому говорят, что взрыв царь-бомбы можно было наблюдать с Марса. К слову, Солнце доставляет на Землю в несколько сотен раз больше энергии, чем потребляет человечество. То есть, чтобы покрыть годовые энергетические потребности всего современного человечества нужно превращать в энергию всего несколько тонн материи.

Учитывая вышесказанное, представим, что средняя сверхновая в своём пике «сжигает» квадриллионы тон вещества. Это соответствует массе крупного астероида. Полная же энергия сверхновой эквивалентна массе планеты или даже маломассивной звезды. Наконец, гамма-всплеск за секунды, а то и за доли секунды своей жизни, выплёскивает энергию, эквивалентную массе Солнца!

Такие разные сверхновые

Термин «сверхновая» не должен ассоциироваться исключительно с взрывом звёзд. Эти явления, пожалуй, также разнообразны, как разнообразны сами звёзды. Науке только предстоит понять многие их секреты.

Сверхновые способны уничтожать целые звездные скопления

Сверхновая может уничтожить даже целое скопление звезд.

Звезды и звездные скопления формируются при коллапсе (сжатии) облака межзвездного газа. В пределах этих все более и более плотных облаков, появляются отдельные «сгустки», которые под действием гравитации притягиваются все ближе друг к другу и, наконец, становятся звездами. После этого звезды «выдувают» мощные потоки заряженных частиц, аналогичные «солнечному ветру». Эти потоки буквально выметают оставшийся межзвездный газ из скопления. В дальнейшем звезды, образующие скопление, могут постепенно удаляться друг от друга, и тогда скопление распадается. Происходит все это довольно медленно и относительно спокойно.

Относительно недавно астрономы обнаружили, что процессу распада звездных скоплений могут способствовать взрывы сверхновых и появление нейтронных звезд, которые создают очень мощные ударные волны, выбрасывающие звездообразующую материю из скопления со скоростью в несколько сотен километров в секунду, тем самым истощая его еще быстрее.

Несмотря на то, что обычно на нейтронные звезды приходится не более 2 процентов массы от общей массы звездных скоплений, создаваемые ими ударные волны, как показывает компьютерное моделирование, способны в четыре раза увеличить скорость распада звездных скоплений.

Обсудить статью можно в нашем Telegram-чате.