Содержание
- Особые свойства твердых тел
- Анизотропия кристаллических тел
- Испарение в жизни
- Примеры аморфных веществ
- Свойства кристаллических и аморфных веществ
- Структура кристаллических тел
- Типы кристаллов
- Виды кристаллов
- Возможные способы роста и образования
- Строение кристаллов
- ПРИМЕРЫ ЗАДАНИЙ
- Анизотропия кристаллов
- Типы кристаллических решёток
- Квазикристаллы
- Химические связи
- Анизотропия
- Оптические свойства и управление спиралью
Особые свойства твердых тел
- Анизотропия – одно из свойств твердого вещества, которое заключается в зависимости физических свойств от направления в кристалле.
- Изотропия – отсутствие зависимости свойства тела от направления
- Полиформизм – особое свойство, которое заключается в способности твёрдых тел находиться в состоянии с различной кристаллической решёткой. Свойство присуще только твердому агрегатному состоянию веществ.
Молекулы и атомы тел типа аморфные поддаются колебаниям, однако незначительным по сравнению с жидкостью, поэтому по внутренним свойствам их можно приравнять к кристаллическим.
Их атомы не находятся в постоянном процессе перестраивания из одного положения в другое, поэтому их состояние равновесия характеризуется как неменяющееся. Аморфные тела в состоянии низкой температуры отвечают свойствам твердых тел. При повышении температуры – меняются связи на молекулярном уровне, а тела начинают напоминать по своим свойствам жидкость.
Аморфные тела имеют одновременно схожесть и с кристаллическими, и с твердыми телами, и с жидкими. Из частицы находятся в определенном порядке, что позволяет создавать материалы, вещества, предметы с заданными и ожидаемыми свойствами. Управляемые свойства твердых тел физика рассматривает как одно из самых основных направлений практически ориентированного изучения того, какими общими свойствами обладают твердые тела и как этими свойствами управлять.
Анизотропия кристаллических тел
В кристаллах частицы расположены с различной плотностью по разным направлениям.
Если мы соединим прямой линией атомы в одном из направлений кристаллической решётки, то расстояние между ними будет одинаковым на всём этом направлении. В любом другом направлении расстояние между атомами тоже постоянно, но его величина уже может отличаться от расстояния в предыдущем случае. Это означает, что на разных направлениях между атомами действуют разные по величине силы взаимодействия. Поэтому и физические свойства вещества по этим направлениям также будут отличаться.
Это явление называется анизотропией — зависимостью свойств вещества от направления.
Электропроводность, теплопроводность, упругость, показатель преломления и другие свойства кристаллического вещества различаются в зависимости от направления в кристалле. По-разному в разных направлениях проводится электрический ток, по-разному нагревается вещество, по-разному преломляются световые лучи.
В поликристаллах явление анизотропии не наблюдается.
Свойства вещества остаются одинаковыми по всем направлениям.
Испарение в жизни
И действительно: чего в этой жизни только не испаряется — мы встречаемся с этим каждый день. Давайте узнаем, зачем этот процесс вообще нужен, и как люди научились извлекать из него пользу.
Испарение в организме человека и животных
Выше мы разбирали вопрос, почему если облиться теплой водой, нам все равно станет холодно. По этому же принципу работает ощущение холода после того, как мы вспотели — в какой-то момент нам становится холодно.
Само потоотделение — важный процесс терморегуляции организма. Если мы достигаем высокой температуры (из-за внешних воздействий или же из-за болезни), то организм стремится себя охладить, чтобы не умереть из-за превращения белков в нашем организме в яичницу.
Пот выделяется через поры кожи, а затем испаряется — все это позволяет нашему организму быстро избавиться от лишней энергии, охладить тело и нормализовать температуру.
При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой и «скинуть» избыточное тепло, но при высокой влажности пот не может испариться. При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно. А при высокой влажности — он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве. |
У животных этот механизм работает схожим образом. Но, например, собакам испарения с кожи недостаточно, поэтому они часто открывают пасть, высовывают язык и дышат порой ну очень смешно
Именно гортань и язык собаки идеально подходят для испарения влаги и охлаждения тела животного.
Испарение у растений
Удивительно, но у растений механизм испарения тоже работает схожим образом. Растения очень любят воду, поэтому домашние растения мы поливаем, а в пустынях их просто нет.
Ту воду, которую цветы поглотили, они могут испарять, чтобы не перегреться под жарким солнцем. Да, вода нужна, чтобы растения питались, но в жаркие дни еще и для температурной саморегуляции. Поэтому не забывайте поливать цветы, а в очень жаркие дни делайте это еще интенсивнее.
Испарение в природе и окружающей среде
Процесс испарения напрямую связан с круговоротом воды в природе. Именно круговоротом воды в природе обеспечивается жизнь на Земле — так как влага разносится по всему миру, растения в дикой природе способны жить без наших попыток полить большую пальму из леечки.
Испарение воды с поверхности рек, озер, морей и океанов создает дождевые тучи, которые затем, проливаясь дождем, поливают растения и деревья. Многие дождь не любят, мол, он мокрый, мерзкий и затекает в ботинки, но он очень нужен засушливым регионам — Северной Африке или Центральной Индии, которые часто страдают от засухи.
Испарение в промышленности и быту
С бытом совсем все просто: мы сушим вещи, готовим еду, покупаем увлажнители воздуха или размазываем разлитую лужу по полу.
В случае с промышленностью для нас все не так очевидно. Промышленная техника, работающая на основе испарения, разрабатывается по схожей схеме: в ней всегда максимально увеличена площадь поверхности жидкости, чтобы испарение шло интенсивно.
Например, испаритель, изображенный на схеме, состоит из совокупности соединенных между собой испарителей. В основе его действия — пар, полученный в одной ступени, который используют в качестве источника тепла для следующей ступени. По мере того, как температура уменьшается от одной ступени к другой, вакуум увеличивается, так что температура кипения становится ниже и испарение поддерживается. Он предназначен для того, чтобы очистить воду от отходов.
Примеры аморфных веществ
Можно привести много примеров подобных веществ. Обозначим несколько самых наглядных и часто встречаемых.
- Шоколад — типичное аморфное вещество.
- Смолы, в том числе фенолформальдегидные, все пластики.
- Янтарь.
- Стекло любого состава.
- Битум.
- Гудрон.
- Воск и другие.
Аморфное тело образуется в результате очень медленной кристаллизации, то есть повышения вязкости раствора при понижении значения температуры. Часто сложно назвать подобные вещества твердыми, их относят скорее к вязким густым жидкостям.
Особое состояние имеют те соединения, которые при затвердевании вообще не кристаллизуются. Их называют стеклами, а состояние — стеклообразным.
Свойства кристаллических и аморфных веществ
Одно из основных свойств кристалла — однородность. Однородным должно считаться тело, в котором на конечных расстояниях от любой его точки найдутся другие, эквивалентные ей не только в физическом отношении, но и геометрическом; т.е. находятся в таком же окружении, как и исходные, поскольку размещением материальных частиц в кристаллическом пространстве «управляет» пространственная решетка, можно считать, что грань кристалла — это материализованная плоская узловая решетка, а ребро — материализованный узловой ряд. Как правило, хорошо развитые грани кристалла определяются узловыми сетками с наибольшей густотой расположения узлов.
Точка, в которой сходятся три и более граней, называется вершиной кристалла.
Анизотропность — это способность кристалла проявлять различные свойства в разных направлениях. Поскольку различные направления в кристаллической структуре вещества, построенного по закону трехмерной периодичности, могут и иметь неодинаковые расстояния между атомами (узлами), а следовательно, и разные по силе химические связи, то и свойства по таким направлениям могут отличаться, а сами кристаллы будут анизотропны относительно этих свойств.
Если свойство не изменяется в зависимости от направления, то вещество изотропно.
Способность самоограняться, т. е. при определенных условиях принимать естественную многогранную форму. В этом также проявляется его правильное внутреннее строение.
Именно это свойство отличает кристаллическое вещество от аморфного. Иллюстрацией этому служит пример. Два выточенных из кварца и стекла шарика опускают в раствор кремнезема. В результате шарик кварца покроется гранями, а стеклянный останется круглым.
Кристаллы построены из материальных частиц — ионов, атомов или молекул, геометрически правильно расположенных в пространстве. Для описания порядка расположения частиц в пространстве их стали отождествлять с точками.
Из такого подхода постепенно сформировалось представление о пространственной, или кристаллической, решетке как о бесконечном трехмерном периодическом образовании. В ней выделяют узлы (отдельные точки, центры тяжести атомов и ионов), ряды (ряд— совокупность узлов, лежащих на одной прямой) и плоские сетки (плоскости, проходящие через любые три узла).
Таким образом, кристаллическое вещество имеет строго закономерное (решетчатое, или ретикулярное) внутреннее строение (от лат. reticulum — сеточка).
Одна из главнейших особенностей кристаллических структур — закономерная повторяемость в пространстве их узлов, рядов и плоских сеток. Отсюда характерные свойства кристаллических веществ:
- а)однородность строения (однородностью кристалла назовём одинаковость узора взаимного расположения атомов во всех частях его объема);
- б) анизотропия (в изотропных телах все свойства — теплопроводность, электропроводность, твёрдость царапания и т.д.
— одинаковы в любом направлении, а в анизотропных телах все свойства неодинаковы в непараллельных направлениях, т.е., например, в одном направлении электрический ток проходит быстрее, в другом — медленей.
Структура кристаллических тел
Все кристаллические тела имеют четкую внутреннюю структуру. Группы частиц в одном и том же порядке периодически повторяются во всем объеме такого тела. Чтобы наглядно представить такую структуру, обычно используют пространственные кристаллические решетки.
Они состоят из определенного количества узлов, которые образуют центры молекул или атомов конкретного вещества. Обычно такая решетка построена из ионов, входящих в состав нужных молекул. Так, в поваренной соли внутренняя структура состоит из ионов натрия и хлора, попарно объединенных в молекулы.
Рисунок 361 Кристаллическая решетка поваренной соли.
Определение 2
В структуре каждого вещества можно выделить одну минимальную составляющую – элементарную ячейку.
Вся решетка, из которой состоит кристаллическое тело, может быть составлена путем трансляции (параллельного переноса) такой ячейки в определенных направлениях.
Типы кристаллов
Принято обозначать два варианта кристаллов. Первый — это монокристаллические структуры, то есть когда сама решетка 1. Кристаллические и аморфные тела в этом случае совсем различны по свойствам. Ведь для монокристалла характерна анизотропия в чистом виде. Он представляет собой самую маленькую структуру, элементарную.
Если же монокристаллы повторяются многократно и соединяются в одно целое, тогда речь идет о поликристалле. Тогда речь об анизотропии не идет, так как ориентация элементарных ячеек нарушает общую упорядоченную структуру. В этом отношении поликристаллы и аморфные тела близки друг другу по проявляемым физическим свойствам.
Виды кристаллов
Сравнение структур монокристаллов и поликристаллов
Кристаллы разделяют на монокристаллы и поликристаллы. Монокристаллами называют вещества, кристаллическая структура которых распространяется на все тело. Такие тела являются однородными и имеют непрерывную кристаллическую решетку. Обычно, такой кристалл обладает ярко выраженной огранкой. Примерами природного монокристалла являются монокристаллы каменной соли, алмаза и топаза, а также кварца.
Сульфат алюминия-калия монокристалл
Немало веществ имеют кристаллическую структуру, хотя обычно не имеют характерной для кристаллов формы. К таким веществам относятся, например, металлы. Исследования показывают, что такие вещества состоят из большого количества очень маленьких монокристаллов — кристаллических зерен или кристаллитов. Вещество, состоящее из множества таких разноориентированных монокристаллов, называется поликристаллическим. Поликристаллы зачастую не имеют огранки, а их свойства зависят от среднего размера кристаллических зерен, их взаимного расположения, а также строения межзеренных границу. К поликристаллам относятся такие вещества как металлы и сплавы, керамики и минералы, а также другие.
Поликристалл висмута
Возможные способы роста и образования
-
Кристаллизация путем возгонки. Подобный метод кристаллизации подразумевает переход вещества из газообразного состояния к твердому, минуя жидкую фазу. Подобный процесс в природе имеет место в вулканических трещинах или кратерах, когда вещество быстро остывает. Однако простейший пример – образование зимой снежинок из воды.
- Раскристаллизация – переход вещества из твердого в твердое состояние, который может происходить по двум сценариям.
- Первый – переход вещества из аморфного твердого тела в кристаллическое. Так, например, происходит кристаллизация стекла, в том числе кристаллизация вулканических пород, содержащих стекло.
- Второй – перекристаллизация вещества с разрушением старой структуры и образованием новой. Большинство горных пород образуются именно таким способом. Известные примеры перекристаллизации: переход известняка в мрамор, кварцевых песчаников в кварциты или глинистых пород в филлиты.
-
Кристаллизация из растворов и расплавов. Наиболее распространенный природный способ образования. Так на дне водоемов «откладываются» кристаллы солей. Этим же способом искусственно выращивают алмаз, сапфир или рубин.
Строение кристаллов
Если описывать строение кристаллических и аморфных тел, то в первую очередь следует указать тип частиц, которые их слагают. В случае кристаллов это могут быть ионы, атомы, атом-ионы (в металлах), молекулы (редко).
Вообще данные структуры характеризуются наличием строго упорядоченной пространственной решетки, которая формируется в результате расположения образующих вещество частиц. Если представить строение кристалла образно, то получится примерно такая картина: атомы (или другие частицы) располагаются друг от друга на определенных расстояниях так, чтобы в результате получилась идеальная элементарная ячейка будущей кристаллической решетки. Затем данная ячейка многократно повторяется, и так складывается общая структура.
Главной особенностью является то, что физические свойства в подобных структурах изменяются в параллелях, но не во всех направлениях. Называется подобное явление анизотропией. То есть если воздействовать на одну часть кристалла, то вторая сторона может не реагировать на это. Так, можно измельчить половину кусочка поваренной соли, однако вторая останется целой.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Испарение и кипение — два процесса превращения вещества из одного агрегатного состояния в другое. Общей характеристикой этих процессов является то, что оба они
А. Представляют собой процесс превращения вещества из жидкого состояния в газообразное
Б. Происходят при определённой температуре
Правильный ответ
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
2. Испарение и кипение — два процесса перехода вещества из одного агрегатного состояния в другое. Различие между ними заключается в том, что
А. Кипение происходит при определённой температуре, а испарение — при любой температуре.
Б. Испарение происходит с поверхности жидкости, а кипение — во всём объёме жидкости.
Правильным(-и) является(-ются) утверждение(-я)
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
3. При нагревании вода превращается в пар той же температуры. При этом
1) увеличивается среднее расстояние между молекулами
2) уменьшается средний модуль скорости движения молекул
3) увеличивается средний модуль скорости движения молекул
4) уменьшается среднее расстояние между молекулами
4. В процессе конденсации водяного пара при неизменной его температуре выделилось некоторое количество теплоты. Что произошло с энергией молекул водяного пара?
1) изменилась как потенциальная, так и кинетическая энергия молекул пара
2) изменилась только потенциальная энергия молекул пара
3) изменилась только кинетическая энергия молекул пара
4) внутренняя энергия молекул пара не изменилась
5. На рисунке приведён график зависимости температуры воды от времени при её охлаждении и последующем нагревании. Первоначально вода находилась в газообразном состоянии. Какой участок графика соответствует процессу конденсации воды?
1) АВ
2) ВС
3) CD
4) DE
6. На рисунке приведён график зависимости температуры воды от времени. В начальный момент времени вода находилась в газообразном состоянии. В каком состоянии находится вода в момент времени \( \tau_1 \)?
1) только в газообразном
2) только в жидком
3) часть воды в жидком состоянии, часть — в газообразном
4) часть воды в жидком состоянии, часть — в кристаллическом
7. На рисунке приведён график зависимости температуры спирта от времени при его нагревании и последующем охлаждении. Первоначально спирт находился в жидком состоянии. Какой участок графика соответствует процессу кипения спирта?
1) АВ
2) ВС
3) CD
4) DE
8. Какое количество теплоты необходимо затратить, чтобы превратить в газообразное состояние 0,1 кг спирта при температуре кипения?
1) 240 Дж
2) 90 кДж
3) 230 кДж
4) 4500 кДж
9. В понедельник абсолютная влажность воздуха днём при температуре 20 °С была равной 12,8 г/см3. Во вторник она увеличилась и стала равной 15,4 г/см3. Выпала ли роса при понижении температуры до 16 °С, если плотность насыщенного пара при этой температуре 13,6 г/см3?
1) не выпала ни в понедельник, ни во вторник
2) выпала и в понедельник, и во вторник
3) в понедельник выпала, во вторник не выпала
4) в понедельник не выпала, во вторник выпала
10. Чему равна относительная влажность воздуха, если при температуре 30 °С абсолютная влажность воздуха равна 18·10-3 кг/м3, а плотность насыщенного пара при этой температуре 30·10-3 кг/м3?
1) 60%
2) 30%
3) 18 %
4) 1,7 %
11. Для каждого физического понятия из первого столбца подберите соответствующий пример из второго столбца. Запишите в таблицу выбранные цифры под соответствующими буквами.
ФИЗИЧЕСКИЕ ПОНЯТИЯ
A) физическая величина
Б) единица физической величины
B) прибор для измерения физической величины
ПРИМЕРЫ
1) кристаллизация
2) джоуль
3) кипение
4) температура
5) мензурка
12. На рисунке приведены графики зависимости от времени температуры двух веществ одинаковой массы, находившихся первоначально в жидком состоянии, получающих одинаковое количество теплоты в единицу времени. Из приведённых ниже утверждений выберите правильные и запишите их номера.
1) Вещество 1 полностью переходит в газообразное состояние, когда начинается кипение вещества 2
2) Удельная теплоёмкость вещества 1 больше, чем вещества 2
3) Удельная теплота парообразования вещества 1 больше, чем вещества 2
4) Температура кипения вещества 1 выше, чем вещества 2
5) В течение промежутка времени \( 0-t_1 \) оба вещества находились в жидком состоянии
Часть 2
13. Какое количество теплоты необходимо для превращения в стоградусный пар 200 г воды, взятой при температуре 40 °С? Потерями энергии на нагревание окружающего воздуха пренебречь.
Анизотропия кристаллов
Существенным свойством монокристалла является анизотропия* — неодинаковость его свойств (механических, тепловых, электрических и т. д.) по различным направлениям. Например, если кристаллы поваренной соли, имеющие кубическую форму, раскалывать, то мелкие осколки будут иметь преимущественно форму прямоугольных параллелепипедов. Это значит, что в направлениях, параллельных граням, прочность кристалла поваренной соли гораздо меньше, чем в диагональных и других направлениях.
* От греческих слов anisos — неравный, tropos — поворот, направление.
Кусок слюды легко расслаивается в одном из направлений на тонкие пластинки (рис. 8.5). Расслоить его в направлении, перпендикулярном пластинкам, гораздо труднее. Также легко расслаивается в одном направлении кристалл графита.
Если грань кристалла, например кварца, покрыть тонким слоем парафина и прикоснуться к нему раскаленной иглой, то парафин начнет плавиться. Расплавленный парафин имеет форму не круга, а эллипса (рис. 8.6), что указывает на различие теплопроводности кристалла по разным направлениям. О неодинаковости теплового расширения кристалла по разным направлениям можно заключить из следующего опыта. Если из монокристалла, например кварца, изготовить тело шарообразной формы и нагреть его, то после нагревания оно уже не будет шаром. Вдоль трех взаимно перпендикулярных диаметров тело расширится неодинаково, и вместо шара получится так называемый эллипсоид (рис. 8.7).
Поликристаллические тела изотропны*, т. е. обнаруживают одинаковые свойства по разным направлениям. Это объясняется тем, что кристаллики, из которых состоит поликристаллическое тело, ориентированы друг по отношению к другу хаотически. В результате ни одно из направлений не отличается от других.
* От греческих слов isos — равный, tropos — поворот, направление.
Большинство кристаллических тел — поликристаллы, так как они состоят из множества сросшихся кристалликов. Одиночные кристаллы — монокристаллы имеют правильную геометрическую форму, и их свойства различны по разным направлениям (анизотропия). |
Типы кристаллических решёток
Кристаллическая решётка — это математическая модель, с помощью которой можно представить, как расположены частицы в кристалле. Мысленно соединив в пространстве прямыми линиями точки, в которых расположены эти частицы, мы получим кристаллическую решётку.
Расстояние между атомами, расположенными в узлах этой решётки, называется параметром решётки
.
В зависимости от того, какие частицы расположены в узлах, кристаллические решётки бывают молекулярные, атомные, ионные и металлические
.
От типа кристаллической решётки зависят такие свойства кристаллических тел, как температура плавления, упругость, прочность.
При повышении температуры до значения, при котором начинается плавление твёрдого вещества, происходит разрушение кристаллической решётки. Молекулы получают больше свободы, и твёрдое кристаллическое вещество переходит в жидкую стадию. Чем прочнее связи между молекулами, тем выше температура плавления.
Молекулярная решётка
В молекулярных решётках связи между молекулами не прочные. Поэтому при обычных условиях такие вещества находятся в жидком или газообразном состоянии. Твёрдое состояние для них возможно только при низких температурах. Температура их плавления (перехода из твёрдого состояния в жидкое) также низкая. А при обычных условиях они находится в газообразном состоянии. Примеры — иод (I 2), «сухой лёд» (двуокись углерода СО 2).
Атомная решётка
В веществах, имеющих атомную кристаллическую решётку, связи между атомами прочные. Поэтому сами вещества очень твёрдые. Плавятся они при высокой температуре. Кристаллическую атомную решётку имеют кремний, германий, бор, кварц, оксиды некоторых металлов и самое твёрдое в природе вещество — алмаз.
Ионная решётка
К веществам с ионной кристаллической решёткой относятся щёлочи, большинство солей, оксиды типичных металлов. Так как сила притяжения ионов очень велика, то эти вещества способны плавиться только при очень высокой температуре. Их называют тугоплавкими. Они обладают высокой прочностью и твёрдостью.
Металлическая решётка
В узлах металлической решётки, которую имеют все металлы и их сплавы, расположены и атомы, и ионы. Благодаря такому строению металлы обладают хорошей ковкостью и пластичностью, высокой тепло- и электропроводностью.
Чаще всего форма кристалла — правильный многогранник. Грани и рёбра таких многогранников всегда остаются постоянными для конкретного вещества.
Одиночный кристалл называют монокристаллом
. Он имеет правильную геометрическую форму, непрерывную кристаллическую решётку.
Примеры природных монокристаллов — алмаз, рубин, горный хрусталь, каменная соль, исландский шпат, кварц. В искусственных условиях монокристаллы получают в процессе кристаллизации, когда охлаждая до определённой температуры растворы или расплавы, выделяют из них твёрдое вещество в форме кристаллов. При медленной скорости кристаллизации огранка таких кристаллов имеет естественную форму. Таким способом в специальных промышленных условиях получают, например, монокристаллы полупроводников или диэлектриков.
Мелкие кристаллики, беспорядочно сросшиеся друг с другом, называются поликристаллами
. Ярчайший пример поликристалла — камень гранит. Все металлы также являются поликристаллами.
Квазикристаллы
Материал гольмий – магний – цинк (Ho – Mg – Zn) образует квазикристаллы , которые могут принимать макроскопическую форму пятиугольного додекаэдра . Только квазикристаллы могут обладать этой 5-кратной симметрией. Края имеют длину 2 мм.
Квазикристаллический состоит из массивов атомов, упорядоченные но не строго периодические. У них много общих атрибутов с обычными кристаллами, таких как отображение дискретного рисунка при дифракции рентгеновских лучей и способность образовывать формы с гладкими плоскими гранями.
Квазикристаллы наиболее известны своей способностью демонстрировать пятикратную симметрию, что невозможно для обычного периодического кристалла (см. Кристаллографическую теорему об ограничениях ).
Международный союз кристаллографии пересмотрел термин «кристалл» , чтобы включать в себя как обычные периодические кристаллы и квазикристаллов ( «любое твердое вещество , имеющее , по существу , дискретной дифракционной диаграммы»).
Квазикристаллы, впервые открытые в 1982 г., на практике встречаются довольно редко. Известно, что только около 100 твердых тел образуют квазикристаллы по сравнению с примерно 400 000 периодических кристаллов, известных в 2004 году. Нобелевская премия по химии 2011 года была присуждена Дэну Шехтману за открытие квазикристаллов.
Химические связи
В общем, твердые тела могут удерживаться вместе с помощью различных типов химических связей , таких как металлические связи , ионные связи , ковалентные связи , ван-дер-ваальсовы связи и другие. Ни один из них не обязательно является кристаллическим или некристаллическим. Однако можно выделить следующие общие тенденции.
Металлы почти всегда поликристаллические, хотя есть исключения, такие как аморфный металл и монокристаллические металлы. Последние выращиваются синтетически. (Микроскопически маленький кусок металла может естественным образом превратиться в монокристалл, но более крупные куски, как правило, этого не делают.) Ионные составные материалы обычно являются кристаллическими или поликристаллическими. На практике крупные кристаллы соли могут быть созданы путем отверждения расплавленной жидкости или путем кристаллизации из раствора. Ковалентно связанные твердые вещества (иногда называемые твердыми телами с ковалентной сеткой ) также очень распространены, яркими примерами которых являются алмаз и кварц . Слабые силы Ван-дер-Ваальса также помогают удерживать вместе определенные кристаллы, такие как кристаллические твердые частицы , а также межслойные связи в графите . Полимерные материалы обычно образуют кристаллические области, но длина молекул обычно препятствует полной кристаллизации, а иногда полимеры полностью аморфны.
Анизотропия
Упорядоченность в строении кристалла приводит к анизотропии, т.е. зависимости физических свойств от выбранного направления. Оно объясняется различием в плотности расположения частиц в кристаллической решетке по разным направлениям. На рисунке 7 условно изображено расположение атомов в одной из плоскостей монокристалла. Через узлы этой плоской решетки проведены различно ориентированные параллельные прямые (1, 2, 3, 4). Видно, что на единицу длины прямых приходится не одинаковое количество атомов. А многие механические свойства кристалла зависят от плотности размещения образующих его частиц.
Прежде всего, бросается в глаза различная механическая прочность кристаллов по разным направлениям. Например, кусок слюды легко расслаивается в одном из направлений на тонкие пластинки, но разорвать его в направлении, перпендикулярном пластинкам, гораздо труднее. Так же легко расслаивается в одном направлении кристалл графита. Когда вы пишете карандашом, такое расслоение происходит непрерывно и тонкие слои графита остаются на бумаге. Многие кристаллы по-разному проводят теплоту и электрический ток в различных направлениях. От направления зависят и оптические свойства кристаллов. Так, кристалл алмаза по-разному преломляет свет в зависимости от направления падающих на него лучей.
Монокристаллы обладают анизотропией, поликристаллы изотропны.
Оптические свойства и управление спиралью
Поскольку величина шага спирали холестерической структуры напрямую связана с оптическими свойствами холестерика и его цветом, то, естественно, возникает вопрос: что же в первую очередь влияет на шаг спирали и соответственно на отраженную длину волны света? Как мы уже сказали, холестерическая фаза образуется только после добавления небольшого количества хиральных соединений — именно они заставляют нематик закручиваться. Величина закручивания зависит от геометрической формы и структуры добавки (допанта), а также от того, как взаимодействуют молекулы жидкого кристалла между собой и с молекулами допанта. Закручивающую силу хиральной добавки обычно выражают в мкм−1 — она может принимать значения от нескольких единиц до сотни. Так можно управлять шагом супрамолекулярной спирали, раскручивая или скручивая холестерик, как пружину.
Мы упоминали, что хиральные молекулы обладают оптической активностью и способны вращать плоскость поляризации света. Этот эффект оказывается очень сильным именно благодаря их спиральной структуре. Так, например, растворы винной кислоты поворачивают плоскость поляризации света примерно на 1 град/см образца; кристаллы кварца — на 300 град/см. А холестерические жидкие кристаллы на 105 град/см!
Холестерические жидкие кристаллы обладают еще одним удивительным оптическим свойством — циркулярным дихроизмом. Это означает, что свет, избирательно отраженный холестериком, циркулярно поляризован, а направление поляризации совпадает с направлением закручивания холестерической спирали. Свет той же длины волны, что и отраженный, но имеющий противоположную циркулярную поляризацию, проходит сквозь слой холестерического жидкого кристалла без изменений. Это свойство жидких кристаллов используют для создания разнообразных устройств (например, циферблата электронных часов, о котором мы расскажем дальше).
Молекулярная структура холестерика весьма тонко уравновешена, но то равновесие легко сместить. Достаточно любого малого возмущения — изменения температуры, давления, механического напряжения, электромагнитного поля, чтобы нарушить слабые силы, действующие между молекулами, и изменить шаг спиральной структуры. А это сейчас же сказывается на оптических свойствах: отражении света, оптической активности, круговом дихроизме и окраске холестерика.
Чаще всего окраску меняют с помощью температуры. Например, при высокой температуре образец бесцветен, однако после охлаждения он переходит в холестерическую фазу и становится фиолетовым. При дальнейшем охлаждении образец пробегает все цвета спектра от синего и зеленого до желтого и красного (рис. 7). Получается идеальный цветовой термоиндикатор. Таким образом, нанося холестерические жидкие кристаллы на поверхности различных объектов, можно получить топографию распределения температуры (рис. 7, цветограмма).
Для удобства холестерики вводят в полимерные пленки, получая так называемые капсулированные жидкие кристаллы. Их используют в качестве термометров, а также для того, чтобы увидеть и сфотографировать тепловые поля. Если нанести такую пленку на человеческое тело, изменение цвета укажет, где локализован воспалительный процесс (аппендицит, перитонит, холецистит и др. заболевания), который, как правило, повышает температуру в месте, где он протекает.
Интересные возможности открывает использование таких пленок в дефектоскопии и неразрушающем контроле различных изделий. При конструировании летательных аппаратов с помощью холестериков можно увидеть, как распределяются воздушные потоки. Холестерики используют также, чтобы определить тепловые поля, характер распределения температуры и мощности лазерного и СВЧ-излучения — для этого созданы специальные ЖК-тепловизоры.
В экологии холестерикам тоже можно найти применение. В последнее время разрабатываются холестерические ЖК-материалы, изменяющие свой цвет под действием малых концентраций паров вредных химических соединений, в том числе отравляющих веществ.
Шаг холестерической спирали можно также менять не только температурой, но и электрическим или магнитным полем. Под его воздействием холестерическая спираль начинает постепенно раскручиваться в зависимости от величины поданного напряжения. Так можно непрерывно управлять цветом жидкого кристалла. При некотором критическом напряжении поля спираль полностью раскрутится, превратив, таким образом, холестерический кристалл в нематический. Этот процесс сейчас активно исследуют для создания новых материалов и устройств, управляемых электромагнитными полями.