Что такое земная кора

Геологическая хронология

Геологическое развитие Земли поделено на эры, которые в свою очередь поделены на периоды. Протяжённость эр составляет сотни миллионов и даже миллиарды лет. Начиная с палеозойской эры, подразделяются на периоды.

Периоды легко запомнить с помощью считалки: Каждый отличный студент должен курить папиросы; ты, Юра, мал — пей ночью чай. Первая буква слов в считалке — это название периода, начиная с самого раненого.

Как определить к какому периоду относится горная порода?

Палеонтологи определяют возраст горных порода по остаткам живых организмов.

Например, в ленинградской области в известняках, которые располагаются в метре от поверхности земли, встречаются маленькие ракушки. Значит можно сделать вывод, что когда — то на этой территории было море.

Эпохи горообразования

В истории земли эпохи активного горообразования сменялись эпохами относительного спокойствия.

Каждая эпоха горообразование (эпоха складчатости) получила свое название. Названия складчатостей часто совпадает с названиями эр.

Выделяют: архейскую (докембрийскую) складчатость, байкальскую, каледонскую, герцинскую, мезозойскую и альпийскую складчатости.

Какие горные хребты образовывались в каждую из складчатостей:

  1. Архейская — сформировались все платформы (древние ядра материков)

  2. Байкальская — Енисейский кряж, Восточный Саян, Становое нагорье, Витимское плоскогорье

  3. Каледонская — Западный Саян

  4. Герцинская — горы Урала, Монголии, Центральной Европы

  5. Мезозойская — Кордильеры, горы северо-востока России

  6. Кайонозойская (альпийская) — Альпийско — Гималайский пояс

Твёрдая оболочка планеты

Понятие литосферы содержит в себе твёрдую оболочку Земли, состоящую из земной коры и пласта размягчённых горных пород, входящих в состав верхней мантии, астеносферы (её пластичный состав даёт возможность плитам, из которых состоит земная кора, передвигаться по ней со скоростью от 2 до 16 см в год). Интересно, что верхний слой литосферы упругий, а нижний – пластичный, что даёт возможность плитам при движении сохранять равновесие, несмотря на постоянные сотрясения.

Во время многочисленных исследований учёные пришли к выводу, что литосфера имеет неоднородную толщину, и во многом зависит от рельефа местности, под которым находится. Так, на суше её толщина составляет от 25 до 200 км (чем старше платформа, тем она больше, а самая тонкая находится под молодыми горными хребтами).

А вот самый тонкий пласт земной коры – под океанами: его средняя толщина колеблется от 7 до 10 км, а в отдельных регионах Тихого океана доходит даже до пяти. Слой самой толстой коры расположен по краям океанов, наиболее тонкий – под срединно-океаническими хребтами. Интересно, что литосфера еще полностью не сформировалась, и процесс этот продолжается поныне (в основном – под океаническим дном).

«Литосфера. Земная кора»

Литосфера. Земная кора. 4,5 млрд. лет назад, Земля представляла собой шар, состоящий из одних газов. Постепенно тяжелые металлы, такие как железо и никель, опускались к центру и уплотнялись. Легкие породы и минералы всплывали на поверхность, охлаждались и отвердевали.

Внутреннее строение Земли.

Принято делить тело Земли на три основные части – литосферу (земную кору), мантию и ядро.

Ядро — центр Земли, средний радиус которого около 3500 км (16,2 % объема Земли). Как предполагают, состоит из железа с примесью кремния и никеля. Наружная часть ядра находится в расплавленном состоянии (5000 °С), внутренняя, по-видимому, твердая (субъядро). Перемещение вещества в ядре создает на Земле магнитное поле, защищающее планету от космического излучения.

Ядро сменяется мантией, которая простирается почти на 3000 км (83 % объема Земли). Считают, что она твердая, в то же время пластичная и раскаленная. Мантия состоит из трех слоев: слоя Голицына, слоя Гуттенберга и субстрата. Верхняя часть мантии, называемая магмой, содержит слой с пониженной вязкостью, плотностью и твердостью — астеносферу, на которой уравновешиваются участки земной поверхности. Граница между мантией и ядром называется слоем Гуттенберга.

Литосфера

Литосфера – верхняя оболочка «твердой» Земли, включающая земную кору и верхнюю часть подстилающей ее верхней мантии Земли.

Земная кора – верхняя оболочка «твердой» Земли. Мощность земной коры от 5 км (под океанами) до 75 км (под материками). Земная кора неоднородна. В ней различают 3 слоя – осадочный, гранитный, базальтовый. Гранитный и базальтовый слои названы так потому, что в них распространены горные породы, похожие по физическим свойствам на гранит и базальт.

Состав земной коры: кислород (49 %), кремний (26 %), алюминий (7 %), железо (5 %), кальций (4 %); самые распространенные минералы — полевой шпат и кварц. Граница между земной корой и мантией называется поверхностью Мохо.

Различают континентальную и океаническую земную кору. Океаническая отличается от континентальной (материковой) отсутствием гранитного слоя и значительно меньшей мощностью (от 5 до 10 км). Толщина континентальной коры на равнинах 35—45 км, в горах 70—80 км. На границе материков и океанов, в районах островов толщина земной коры составляет 15—30 км, гранитный слой выклинивается.

Положение слоев в континентальной коре свидетельствует о разном времени ее образования. Базальтовый слой является самым древним, моложе его – гранитный, а самый молодой – верхний, осадочный, развивающийся и в настоящее время. Каждый слой коры формировался в течение длительного отрезка геологического времени.

Литосферные плиты

Земная кора находится в постоянном движении. Первым гипотезу о дрейфе материков (т.е. горизонтальном движении земной коры) выдвинул в начале ХХ века А. Вегенер. На ее основе создана теория литосферных плит. Согласно этой теории, литосфера не является монолитом, а состоит из семи крупных и нескольких более мелких плит, «плавающих» на астеносфере. Пограничные области между литосферными плитами называют сейсмическими поясами — это самые «беспокойные» области планеты.

Земная кора разделяется на устойчивые и подвижные участки.

Устойчивые участки земной коры — платформы — образуются на месте геосинклиналей, потерявших подвижность. Платформа состоит из кристаллического фундамента и осадочного чехла. В зависимости от возраста фундамента выделяют древние (докембрийские) и молодые (палеозойские, мезозойские) платформы. В основании всех материков лежат древние платформы.

Подвижные, сильно расчлененные участки земной поверхности называются геосинклиналями (складчатыми областями). В их развитии выделяют два этапа: на первом этапе земная кора испытывает опускания, происходит накопление осадочных горных пород и их метаморфизация. Затем начинается поднятие земной коры, горные породы сминаются в складки. На Земле было несколько эпох интенсивных горообразований: байкальская, каледонская, герцинская, мезозойская, кайнозойская. В соответствии с этим выделяют различные области складчатости.

Распространение и возраст платформ и геосинклиналей показывается на тектонической карте (карте строения земной коры).

Конспект урока «Литосфера. Земная кора». Следующая тема «Горные породы».

Разлом в геологии – что это такое?

Тело нашей планеты в буквальном смысле слова испещрено разломами – огромными тектоническими и совсем крохотными по размеру (так называемыми микроразломами). Эти области на земной поверхности, как правило, являются зонами повышенной сейсмической опасности. Крупные и разрушительные землетрясения здесь – отнюдь не редкость. Тем не менее в зонах активных геологических разломов продолжают жить люди.

С научной точки зрения, разлом – это нарушение цельности массива горных пород, имеющее четкую территориальную привязку к местности. Крупнейшие разрывы земной коры расположены на стыках двух соседних литосферных плит. Геологические и тектонические разломы – это прямое доказательство того, что земные массы пребывают в постоянном движении.

Ученые назвали пять самых опасных геологических разломов Земли. И в этих районах живут миллионы людей, которые ежедневно и ежеминутно подвержены огромному риску. Вот эти места:

  • Разлом Сан-Андреас (США).
  • Озеро Киву (Руанда и ДР Конго).
  • Японские острова.
  • Остров Суматра (Индонезия).
  • Побережье озера Байкал (Россия).

Кроме того, непосредственно на разломах земной коры расположены десятки крупных городов мира. Самые известные среди них – Стамбул, Токио, Сиэтл, Сан-Франциско, Лос-Анджелес.

Плиты земной коры и их границы

Границы литосферных плит бывают двух типов:

  • Дивергентные (границы раздвигания).
  • Конвергентные (границы столкновения).

Если две плиты двигаются в противоположные стороны, то граница между ними будет называться дивергентной. В рельефе такая зона будет выражена рифтом – океаническим или континентальным.

Если же две плиты двигаются друг к другу, то между ними образуется конвергентная граница (или так называемая зона столкновения). И здесь возможны три варианта:

  • Встречаются две континентальные плиты (формируется складчатая область).
  • Встречаются две океанические плиты (одни из плит «ныряет» под другую, более плотную).
  • Континентальная плита сталкивается с океанической (материковая плита «находит» на менее плотную океаническую).

В отдельных редких случаях плиты не сходятся и не расходятся, а просто трутся друг о друга своими краями. На какое-то время они сжимаются, но потом расходятся, высвобождая большое количество энергии и провоцируя мощные землетрясения. Самый яркий пример такой зоны – это разлом Сан-Андреас в Калифорнии.

Исторический экскурс

В XIX веке был такой американский исследователь — Джеймс Холл, изучавший горную систему Аппалачи. Его наработки и концепции послужили вехой в развитии консервативных идей геологии. Учёный утверждал, что в горизонтальном направлении ничего не двигается. Изменения идут только вертикально, но насколько быстро это происходит, не известно.

Существуют такие понятия:

  • фиксизм;
  • мобилизм.

Если говорить кратко, то в фиксизме считается, что все движения планеты происходят только вертикально. Мобилизм говорит о горизонтальных изменениях, которые могут повлечь за собой и вертикальные. Вначале все идеи базировались на первой концепции, даже когда речь шла о геологии полезных ископаемых. Основные причины внедрения фиксизма:

  1. Большую часть полезных ископаемых находили в горах.
  2. Горные образования часто проходили по границам континентов.
  3. По теории фиксизма находили минералы.

Но в итоге люди поняли, что не всё так просто. Концепция хоть и частично работала, но исходила из ошибочных убеждений

Учёные начали обращать внимание на необоснованность фиксизма. Они не могли объяснить, какая природа движения блоков и почему их расположение именно такое

Во Вторую мировую войну был изобретён эхолот. Это изобретение смогло показать исследователям дно. Полученные данные перевернули сознание учёных. Выяснилось, что на дне есть гряды, конические формы и очень разнообразный рельеф. Это полностью опровергало фиксизм, так как вертикальное движение не могло объяснить такие образования.

Новейшая тектоника – неотектоника

Научная дисциплина, изучающая новейшие движения земной коры, называется неотектоникой. Под «новейшими» имеются в виду те движения и деформации коры, которые происходили в неогеновом и продолжают происходить в четвертичном периодах геологической истории Земли.

Неотектонические движения проявляются в виде горизонтальных и вертикальных смещений блоков горных пород. Их средние скорости исчисляются всего несколькими миллиметрами за год. Тем не менее именно они обусловили все то разнообразие, которые мы наблюдаем в современном рельефе нашей планеты.

Неотектоника зародилась и активно развивалась в первой половине ХХ века. В 1937 году советский геолог Сергей Шульц на семнадцатой сессии Международного геологического конгресса представил основные теоретические положения новой научной дисциплины. Одно из последних достижений этой науки – «Карта новейшей тектоники Северной Евразии», созданная А. Ф. Грачевым. Неотектонические исследования крайне важны для поиска полезных ископаемых, а также используются в различных геологических и инженерных работах.

Описание платформ

Платформа – это практически неподвижные части земной коры, которые прошли очень долгий этап геологического формирования. Их возраст определяют по этапу образования кристаллического фундамента (гранитного и базальтового слоёв). Древние или докембрийские платформы на карте всегда находятся в центре континента, молодые – или на краю материка, или между докембрийскими платформами.

Горно-складчатая область

Горно-складчатая область была сформирована во время столкновения тектонических плит, что расположены на материке. Если горные хребты были сформированы недавно, возле них фиксируется повышенная сейсмическая активность и все они расположены по краям литосферных плит (более молодые массивы относятся к альпийскому и киммерийскому этапу образования). Более старые области, относящиеся к древней, палеозойской складчатости, могут располагаться как с краю материка, например, в Северной Америке и Австралии, так и по центру – в Евразии.

Интересно, что возраст горно-складчатых областей учёные устанавливают по самым молодым складкам. Поскольку горообразование происходит беспрестанно, это даёт возможность определить лишь временные рамки этапов развития нашей Земли. Например, наличие горного хребта посреди тектонической плиты свидетельствует о том, что когда-то здесь проходила граница.

Евразийская литосферная плита

В состав этой плиты входит большая часть соответствующего континента. К ней не относятся Индостан, Аравийский п-ов, часть северо-восточной Евразии.

В северной области плиты находится материковая отмель крупных размеров, которая переходит в воды Северного Ледовитого океана и граничит с хр. Геккеля. В южной части располагается большая горная цепь, которая появилась как следствие столкновения Евразийской и Индостанской плит.

Эта плита покрывает значительную территорию Земли – около 67,8 млн км2. В ее составе материковая кора занимает самое большое место из всех плит. Скорость движения Евразийской плиты составляет примерно 7-14 мм в год.

Восточная сторона плиты граничит на севере с Североамериканской плитой и Филиппинской – на юге. Южная ее сторона – это граница с Африканской литосферной плитой на западе и Аравийской – в центре. Западная сторона представляет собой границу с Североамериканской плитой.

Расхождения границ Евразийской и Североамериканской плит вызвали извержения вулканов в Исландии (Элдфелла в 1783 г. и Эйяфьятлайокудля в 2010 г.).

3.2. Границы между тектоническими плитами – источник активности Земли.

Основные виды движений литосферных плит

Плиты могут двигаться, одна относительно другой, в горизонтальной плоскости, при этом происходит сдвиг вдоль границ плит. Плиты могут раздвигаться, удаляясь друг от друга, а открывающееся зияние между ними, заполняется новым коровым веществом. В этих местах, площадь литосферы наращивается. Если  океанические плиты раздвигаются, то этот процесс называется спрединг океанического дна. Если же раскалывается континентальная плита, то такой процесс получил название рифтинг.
Площадь поверхности Земли постоянная, и, поэтому, нарастание площади плиты, должно где-то компенсироваться. И этим местом являются области поглощения “лишнего” вещества самой Землей, которые получили название областей субдукции. Субдукция – это поглощение мантией Земли излишков литосферы. Если поглощается океаническая литосфера, то области “подныривания обозначаются глубочайшими океаническими впадинами, такими как например Марианская впадина.
В процессе жизни плиты, на ней может образовываться континент. Если сближаются две плиты, на которых уже “наросли” континенты, то при их столкновении континенты не могут “подныривать” один под другой, поэтому, возникает так называемая область коллизии. Континенты упираются друг друга и, в результате могут вырастать высокие горные страны.
Совокупное действие таких процессов, как спрединг, рифтинг, субдукция и коллизия  приводит к перемещению континентов Земли. То есть, к периодическому рождению и распаду суперконтинентов. Последний из распавшихся суперконтинетов, был суперконтинент Пангея, о чем мы расскажем в следующем разделе.

 Суперконтинент Пангея.

В результате мощных процессов внутри Земли, суперконтинент Пангея начал распадаться на обломки – на те самые современные литосферные плиты. Первоначально, Пангея расколась на два огромных континента – северный (Лавразия) и южный (Гондвана). Северный континент Лавразия раскололся на два континента – Евразию и Северную Америку. Южный – Гондвана раскололся на пять континентов: Африку, Южную Америку, Индию, Австралию и Антарктиду. В последующем, Индийская плита неожиданно сдвинулась со своего первоначального места и с огромной (по геологическим масштабам) скоростью начала дрейфовать на север, пока не “упёрлась” в подбрюшие Евразиатского континента. В результате этой коллизии, которая продолжается до наших дней, растут высочайшие на поверхности Земли горы – Гималаи.

Другие важные понятие тектоники

Тектоническая структура – это совокупность складчатых сооружений, разломов и разрывов земной коры на той или иной территории. Она тесно связана с рельефом, геологическим строением и полезными ископаемыми конкретного региона. Если говорить точнее, она определяет все вышеперечисленное.

Тектонический рельеф – это крупнейшие формы земной поверхности, которые были образованы в результате движений литосферных плит коры (вертикальных или горизонтальных). К ним относятся складчатые области, горные хребты и межгорные котловины, тектонические разломы и сдвиги, синклинали и антиклинали, и другие.

Геосферы Земли

Состав и свойства основных геосфер

Начиная от центра Земли, существуют следующие внутренние оболочки:

  1. Ядро. Занимает порядка 30% от общего объема планеты, влияет на магнитное поле Земли. Состоит из твердой и жидкой частей.
  2. Мантия. Практически самая объемная оболочка, составляющая более 80% Земли и более 60% от всей массы. Верхняя часть мантии (800-900 км) менее плотная и представляет собой магму, которая периодически выплескивается на поверхность планеты
  3. Земная кора. Тонкая оболочка (от 2 до 40 км), находящаяся на поверхности мантии. По плотности превосходит верхние слои мантии. Образуется базальтами и гранитами.
  4. Литосфера. Так принято называть совокупность земной коры и верхнего слоя мантии (астеносферы), а так же почву, образующуюся на поверхности земной коры. В литосфере выделяют особые движущиеся блоки — литосферные плиты.
  5. Гидросфера. Водная оболочка Земли, включающая в себя не только воду в жидком состоянии, но и в кристаллическом (ледовый покров Земли), а также в газообразном. Между компонентами гидросферы постоянно происходит взаимодействие за счет перехода воды в разные состояния. Большую часть гидросферы составляет мировой океан — более 70% оболочки. Его глубина в среднем составляет 4 км.
  6. Атмосфера. Газовая оболочка планеты. Отделяет литосферу и гидросферу от космического пространства. Атмосферу разделяют на несколько слоев: тропосфера, стратосфера, мезосфера, термосфера и экзосфера. При этом 80% воздуха, который необходим для жизни, содержится в тропосфере. Здесь же происходят такие погодные явления, как облака, конвекция, циклоны и антициклоны. Границы тропосферы неоднородны: 8-10 км в полярных областях и 16-18 км в тропиках.
  7. Биосфера. Состоит из всех живые организмы планеты и располагается на верхних слоях литосферы, в гидросфере, в нижнем слое тропосферы. Оболочка постоянно преображается организмами и включает в себя, в том числе, продукты их жизнедеятельности, которые могут переходить в состав других оболочек (например, каменный уголь).
  8. Ионосфера. Часть атмосферы, облученной солнцем, начинающейся примерно на уровне от 60 км до 100 км. Состоит из ионов газов (в основном азота и кислорода) и квазинейтральной плазмы. Заряженные частицы ионосферы важны для прохождения радиоволн.
  9. Магнитосфера. Внешняя оболочка Земли, которая представляет собой магнитное поле, взаимодействующее с магнитными волнами, исходящими от космических объектов: солнца, метеоров и т.д.

Вторичные геосферы

Дополнительные или вторичные геосферы связаны с деятельностью людей.

Определение

Антропосфера — геосфера, связанная с хозяйственной деятельностью человечества. Она формируется благодаря влиянию человека на другие географические оболочки.

Ноосфера. Впервые определение этой сферы было дано Вернадским В. И. в 1944 году. Буквально — сфера разума. По мысли ученого, ноосфера — это следующая стадия развития эволюции биосферы, в которой главную роль будет играть воля человека.

Социосфера включает общественные формы и структуры: семья, общество, церковь, государство, нация и другие, а также отношения между этими структурами — всемирные организации, войны, миграция и т.д.

Гигантский раскол

Как же образовались континенты и литосферные плиты? Около 250 миллионов лет назад Земля выглядела совершенно не так, как сейчас. Тогда на нашей планете был всего один, просто-таки гигантский материк под названием Пангея. Его общая площадь впечатляла и равнялась площади всех ныне существующих материков, включая острова. Пангея со всех сторон омывалась океаном, который назывался Панталасса. Этот огромнейший океан занимал всю оставшуюся поверхность планеты.

Однако существование суперматерика оказалось недолговечным. Внутри Земли бурлили процессы, в результате которых вещество мантии начало растекаться в разные стороны, постепенно растягивая материк. Из-за этого Пангея сначала разъединилась на 2 части, образовав два континента — Лавразию и Гондвану. Затем и эти материки постепенно раскололись на множество частей, которые постепенно разошлись в разные стороны. Помимо новых материков, появились литосферные плиты. Из названия наиболее крупных плит становится понятным, в каких местах образовались гигантские разломы.

Остатки Гондваны — это известные нам Австралия и Антарктида, а также Южно-Африканская и Африканская литосферные плиты. Доказано, что эти плиты и в наше время постепенно расходятся — скорость из движения составляет 2 см в год.

Осколки Лавразии превратились в две литосферные плиты — Северо-Американскую и Евразийскую. При этом Евразия состоит не только из осколка Лавразии, но и из частей Гондваны. Названия наиболее крупных плит, формирующих Евразию — Индостанская, Аравийская и Евразийская.

В образовании Евразийского континента непосредственное участие принимает Африка. Её литосферная плита медленно сближается с Евразийской, образуя горы и возвышенности. Именно из-за этого «союза» появились Карпаты, Пиренеи, Рудные горы, Альпы и Судеты.

Что такое литосферная плита

Литосферная плита – крупный стабильный участок земной коры, часть литосферы.

Земная кора – верхняя часть литосферы. Существует два типа земной коры – материковая и океаническая. Отличаются они друг от друга толщиной и строением. Толщина материковой коры составляет 30-40 км. Она состоит из 3 слоев: осадочного, гранитного и базальтового. Океаническая имеет толщину в 3-7 км, содержит осадочный и базальтовый слои.

Ниже земной коры расположена мантия, которая состоит из верхней и нижней частей. Границы нижней находятся на глубине около 2900 км. Температура вещества мантии доходит до 800-2000 ⁰C. Центр Земли – ядро. Нижняя граница его располагается на глубине 6371 км, средний радиус – 3500 км. Состоит оно из внешнего жидкого и внутреннего твердого ядра. Температура внутри него составляет около 6000 ⁰C.

Понятие и определение тектонической плиты

Литосферная плита — принятое название для отдельного блока (общее их количество — 7) планеты. Из таких частей состоит земная кора, которая может быть двух типов:

  • материковая;
  • тектоническая.

Кору можно назвать неоднородной, так как по своему строению она состоит из различных пород. Также этот слой значительно усложнён различными разрывами и разломами, которые часто бывают на границах крупных блоков литосферы. На картинке представлены литосферные плиты на карте мира.

В состав литосферных плит входят не только материки, но и близлежащие части океанов. К определённым блокам относится только морское дно. Список самых крупных плит:

  1. Евразийская или Евроазиатская (где находится Евразия, включая Россию).
  2. Африканская (на ней расположен целый континент Африка).
  3. Тихоокеанская.
  4. Индо-Австралийская.
  5. Антарктическая.
  6. Южноамериканская.
  7. Североамериканская.

Интересно, что все составные имеют 2 типа коры. Их структура включает в себя материковую и океаническую части. Первая состоит из трёх шаров, а вторая — из двух. Но только тихоокеанская тектоническая плита полностью представлена океанической корой.

Тихоокеанская литосферная плита

Эта литосферная плита занимает самую большую площадь на Земле – около 103,3 млн км2. Основная часть плиты состоит из океанической коры, но она включает и материковую область (Новая Зеландия, Калифорния). Скорость ее перемещения – около 56-102 мм в год.

Между Тихоокеанской и Североамериканской литосферными плитами есть разлом Сан-Андреас, который появился после исчезновения плиты Фараллон. Из-за него происходят землетрясения, магнитуда которых доходит до 9 пунктов.

Литосферная плита Скотия

Другое ее название – Скоша. Эта плита находится на краю южной части Атлантического и Южного океанов. Она занимает площадь примерно в 1,6 млн км2. Скорость ее движения – 2,5 см в год.

Это небольшого размера плита, движение которой контролируется 2 плитами, окружающими ее: Южноамериканской и Антарктической. Скотия состоит из океанической коры и материковых фрагментов, расположенных вокруг одноименного моря. В настоящее время плита практически полностью погружена под воду, за исключением небольших островов.

Изменения поверхности в прошлом

Возраст самой древней части континентальной коры, которая была обнаружена на Земле, составляет примерно 4,02 миллиарда лет. Наиболее раннему океаническому дну около 340 миллионов лет. Его нашли на востоке Средиземного моря.

Учёные считают, что движение литосферных плит началось 3,5 миллиарда лет назад. Этот вывод они сделали, исходя из добытых древних пород и минералов. Континенты на Земле были в течение всей её жизни. Но они успели несколько раз изменить свою конфигурацию.

Ради моделирования древнего движения плит было проведено огромное количество различных исследований. Из-за непрерывности этого процесса происходит постепенное формирование и разрушение континентов. В итоге образуется суперконтинент, включающий в себя всю сушу планеты.

Считается, что первый суперконтинент образовался более 2 млрд лет назад, и распался спустя 500 млн лет. Его назвали Колумбией.

Последними был Пангея. Он образовался около 300 млн лет назад. Распад произошёл спустя 125 млн лет. После разрыва суперконтинент разделился на 2: Прото-Лавразия и Прото-Гондвана. Между ними расположился огромный океан, который назвали Тетис.

Определённые исследования, проведённые геологами и астробиологами, показывают, что тектоника необходима для поддержания жизни на планете. Без движения коры не будет стабильной температуры. Также океаны исчерпают свои питательные вещества. А в 2015 году доказали, что тектоническая активность нужна для эволюции всех видов.

Характеристика теорий

Существует несколько теорий тектонических плит. Наиболее популярной из них является гипотеза, выдвинутая А. Вегенером. Она основывалась на предположении, что много миллионов лет назад западная Африка и восточная часть Южной Америки были единым целым.

Вегенер внёс значительный вклад в развитие тектоники. Прежде всего, он утверждал, что литосферные блоки разной весовой категории с довольно жёсткой структурой расположены на астеносфере Земли. Внешняя мантия была весьма пластичной, вследствие чего тектонические плиты постоянно находились в хаотичном движении.

Беспорядочное перемещение платформ приводило к их неизбежному столкновению. Плиты также могли заходить на поверхности друг друга. Все эти события способствовали появлению таких природных явлений, как извержения вулканов и катастрофических землетрясений. Участки земной коры, имеющие высокую степень сейсмической активности, смещались в пространстве приблизительно на восемнадцать сантиметров в год. На земной поверхности также можно было наблюдать извержение магмы из недр.

В настоящее время некоторые учёные считают, что именно магма принимала активное участие в формировании океанического дна. Лава, выходящая из недр Земли, постепенно остывала, в результате чего формировался новый рельеф. При этом те участки земной коры, которые не принимали участия в формировании структуры дна, с помощью дрейфа литосферных блоков снова проникали в земные недра, превращаясь в магму.

Кроме того, в своих научных исследованиях А. Вегенер уделял время изучению темы вулканов. Он рассматривал вопросы, касающиеся растяжения океанического дна и состава жидких веществ в недрах Земли.

Кроме А. Вегенера существенный вклад в развитие тектонической науки внёс Шмеллинг. В своих научных трудах он впервые открыл силу движения литосферных плит. Учёный установил, что главным движущим фактором является конвекция, при которой нижние земные слои с более высокой температурой поднимаются, а верхние постепенно остывают и проходят вниз к недрам Земли.

В настоящее время современная тектоническая наука включает в себя следующие основные положения:

  • земная кора состоит из литосферы и астеносферы. Первая из них имеет более хрупкое строение, в то время как последняя — более пластичную;
  • главной движущей силой тектонических (литосферных) блоков является конвекция, происходящая в астеносфере;
  • структура земной поверхности представлена восемью крупными плитами. Кроме того, она включает в себя как средние, так и более мелкие блоки;
  • чаще всего тектонические плиты самого малого размера располагаются между основными земными блоками;
  • наиболее сейсмически активными участками являются те зоны, которые находятся на границе двух платформ;
  • в процессе активного перемещения плит также принимают активное участие силы, подчиняющиеся теореме вращения Эйлера.

Таким образом, именно движение тектонических платформ, происходящее на протяжении многих миллионов лет, способствовало формированию отдельных материков, островов, континентальных рифов и каньонов, которые существуют в настоящее время. Учёные выявили устойчивую тенденцию в динамике плит. Так, скорость горизонтальных сдвигов блоков возросла примерно в два раза в течение ста миллионов лет. Однако, согласно прогнозам учёных, она должна была, наоборот, уменьшиться. Исходя из этого можно сделать вывод, что характер поведения плит не является слишком предсказуемым.

Исследователи утверждают, что основным фактором, влияющим на темп движения, является вода. Именно огромное скопление жидкости внутри земной поверхности способствует смягчению мантии, в результате чего скорость перемещения плит значительно повышается. Необходимо отметить тот факт, что процесс перемещения литосферных блоков все ещё не завершён. Образ земной поверхности до сих пор продолжает формироваться.