Чёрная дыра: 10 теорий и фактов о самом загадочном объекте космоса

Как выглядят черные дыры

Черные дыры имеют три «слоя»: внешний и внутренний горизонт событий, а также сингулярность.

Горизонт Событий черной дыры — это граница вокруг устья черной дыры, за которую не может проникнуть свет. Как только частица пересекает горизонт событий, она не может вырваться обратно. Гравитация постоянна по всему горизонту событий.

Внутренняя область черной дыры, где находится масса объекта, известна как его сингулярность, — это точка в пространстве и времени, где сосредоточена масса черной дыры.

Ученые не могут видеть черные дыры так, как они могут видеть звезды и другие объекты в космосе. Вместо этого астрономы должны полагаться на обнаружение излучения, которое испускают черные дыры, когда пыль и газ втягиваются внутрь. Но сверхмассивные черные дыры, лежащие в центре галактики, могут быть окутаны густой пылью и газом вокруг них, что может блокировать излучение.

Иногда, когда материя притягивается к черной дыре, она рикошетит от горизонта событий и выбрасывается наружу, вместо того чтобы быть втянутой внутрь. Создаются яркие струи, движущиеся с почти релятивистскими скоростями. Хотя черная дыра остается невидимой, эти мощные струи можно наблюдать с больших расстояний.

Изображение черной дыры на телескопе Event Horizon в M87 (выпущенном в 2019 году) было экстраординарным усилием, потребовавшим двух лет исследований даже после того, как снимки были сделаны. Это происходит потому, что совместная работа телескопов, которая охватывает многие обсерватории по всему миру, производит поразительное количество данных, которые слишком велики для передачи через интернет.

Со временем исследователи ожидают получить изображение других черных дыр и построить хранилище того, как выглядят эти объекты. Следующая цель, вероятно, Стрелец А*, который является черной дырой в центре нашей собственной галактики Млечный Путь. Стрелец A* интригует, потому что он тише, чем ожидалось, что может быть связано с магнитными полями, подавляющими его активность. Другое исследование показало, что Стрельца А* окружает холодное газовое гало, что дает беспрецедентное понимание того, как выглядит окружающая среда вокруг черной дыры.

Надоедливый парадокс

Хотя на тот момент это открытие было невероятным — излучение было названо в честь Хокинга — оно породило вопрос, так называемый информационный парадокс черной дыры, который ученые разбирают до сих пор.

Матур считает, что положил ему конец своей теорией «пушистого комка».

Согласно теории Хокинга, излучение Хокинга генерируется всем, что попадает в черную дыру. Часть попадающего выплевывается обратно, тогда как остальное оказывается в ловушке внутри черной дыры и теряется навеки. Отсюда возникает парадокс: одно из фундаментальных понятий физики утверждает, что никакая материя во Вселенной не может быть полностью потеряна или уничтожена, что прямо противоречит оригинальному утверждению Хокинга. Сегодня ученые, в том числе и Матур, все еще убеждены, что излучение Хокинга остается правдоподобным компонентом черных дыр, хотя оно до сих пор не наблюдалось.

Спустя 30 лет у Хокинга так и не появилось убедительного решения парадокса, им же и открытого, но у Матура — вполне. Просто последний ученый решил представить черные дыры твердой поверхностью, у которой нет черных ходов.

Черные дыры как область пространства-времени

Черные дыры еще определяют как область пространства-времени. Сергей Попов объясняет, что все современные теории гравитации — теории геометрические. В них гравитация описывается как свойство пространства и времени. Имеется в виду, что между пространством и временем можно составить уравнение, это взаимосвязанные величины.

С начала ХХ века, с первых работ Эйнштейна по теории относительности, пространство и время объединены в некоторую сущность. Любые тела, не только массивные, но и самые маленькие, искривляют пространство вокруг себя и одновременно влияют на ход времени. Современные измерения позволяют определить, что в одном месте время идет не так, как в другом. Можно провести эксперимент и обнаружить эту разницу.

Визуализация черной дыры

(Фото: NASA)

Черная дыра — это экстремальный способ воздействия на пространство — когда в одном месте собрали так много вещества или энергии, что пространство-время свернулись и образовали специфическую область. Можно говорить, что черная дыра — это объект, но с бытовой точки зрения объект — это что-то имеющее поверхность. Если идти по абсолютно темной комнате, можно наткнуться на стол, это будет объект с началом в конкретной точке. Если в абсолютно темной комнате или с завязанными глазами попасть в черную дыру, невозможно заметить ее границу. Потому что нет никакой твердой поверхности, человек сразу окажется внутри этой области.

Сергей сравнивает такой переход с государственными или областными границами. Если идти по лесу из одной страны в другую, то без указателей и карт невозможно заметить, в какой точке кончается одно государство и начинается другое. Лес в Финляндии ничем не отличается от леса в России, и нет никакой четкой границы, на которую можно наткнуться. И черная дыра — это такая область, где масса свернула пространство-время, и в итоге никакие предметы не могут ее покинуть, как только пересекут границу. Все, что туда попало, навсегда останется за горизонтом.

Футурология

Выход в космос: где в России можно посмотреть на звезды

Черные дыры интересны в первую очередь как экстремальные объекты. Это максимально скрученное пространство-время, и многие эффекты становятся более заметны вблизи черных дыр. Начинают появляться принципиально новые физические феномены.

Визуализация черной дыры

(Фото: NASA)

В теории гравитации стремятся подобраться как можно ближе к этим экстремальным объектам. Поэтому, говорит Сергей, изучение поведения вещества в окрестности черных дыр — очень интересная штука.

Невидимые звезды

Так уж сложилось, что современные физики описывают устройство нашей Вселенной с помощью теории относительности, которую человечеству в начале 20 века заботливо предоставил Эйнштейн. Тем более загадочными становятся черные дыры, на горизонте событий которых прекращают действовать все известные нам законы физики и эйнштейновская теория в том числе. Это ли не прекрасно? К тому же, догадку о существовании черных дыр высказали задолго до рождения самого Эйнштейна.

В 1783 году в Англии наблюдался значительный рост научной активности. В те времена наука шла бок о бок с религией, они неплохо уживались вместе, а ученых уже не считали еретиками. Более того, научными изысканиями занимались священники. Одним из таких служителей Бога был английский пастор Джон Мичелл, который задавался не только вопросами бытия, но и вполне научными задачами. Мичелл был весьма титулованным ученым: изначально он был преподавателем математики и древнего языкознания в одном из колледжей, а после этого за ряд открытий был принят в Лондонское королевское общество.

Джон Мичелл занимался вопросами сейсмологии, но на досуге любил поразмыслить о вечном и космосе. Так у него родилась идея о том, что где-то в глубинах Вселенной могут существовать сверхмассивные тела с такой мощной гравитацией, что для преодоления силы тяготения такого тела необходимо двигаться со скоростью равной или выше скорости света. Если принять такую теорию за истину, то развить вторую космическую скорость (скорость, необходимая для преодоления гравитационного притяжения покидаемого тела) не сможет даже свет, поэтому такое тело останется невидимым для невооруженного глаза.

Свою новую теорию Мичелл обозвал «темными звездами», а заодно попытался вычислить массу таких объектов. Свои мысли по этому поводу он высказал в открытом письме Лондонскому королевскому обществу. К сожалению, в те времена такие изыскания не представляли особой ценности для науки, поэтому письмо Мичелла отправили в архив. Лишь спустя две сотни лет во второй половине 20 века удалось обнаружить его среди тысяч других записей, бережно хранящихся в древней библиотеке.

Промежуточные черные дыры — застрявшие посередине

Ученые когда-то считали, что черные дыры имеют только малые и большие размеры. Но недавние исследования показали возможность существования средних или промежуточных черных дыр (IMBH). Такие тела могут образовываться, когда звезды в кластере сталкиваются по цепной реакции. Некоторые из этих звезд, образовавшихся в одной и той же области пространства, в конечном итоге могут коллапсировать вместе в центре галактики и создать сверхмассивную черную дыру.

В 2014 году астрономы обнаружили объект, оказавшийся черной дырой промежуточной массы. Он находится в рукаве спиральной галактики.

Почему это событие важно?

Астрофизики уже давно не сомневаются в существовании чёрных дыр, но до сих пор это была лишь модель, которая очень хорошо описывала целый ряд астрофизических явлений: излучение ядер галактик, двойные рентгеновские системы и т. д. Да, без неё трудно объяснить наблюдаемые явления, но это была всё же модель. А вот теперь мы увидели чёрную дыру воочию, это наблюдаемый факт. Кроме того, впервые получено экспериментальное подтверждение вращения чёрных дыр.

Новых результатов работа EHT в целом не принесла. Многие свойства полученного изображения даже неожиданно хорошо соответствуют теоретическим представлениям. Но, с другой стороны, это даёт уверенность в правильности методов измерения и интерпретации результатов, в том числе и оценок массы чёрной дыры.

Зато в дальнейшем доработанный метод и более масштабные наблюдения, возможно, с участием космического телескопа позволят детально наблюдать процессы около чёрной дыры, которые тоже до сих пор были только моделью. Благодаря этому астрофизики смогут «разобраться» с вопросами по сильным гравитационным эффектам, ожидаемым вблизи чёрной дыры, по поведению вещества вблизи чёрной дыры, в том числе и с механизмом возникновения джетов.

Результаты наблюдений можно использовать для тестирования общей теории относительности и различных альтернативных теорий гравитации, которые предсказывают, например, разную форму «тени». Так, общая теория относительности предсказывает, что «тень» чёрной дыры будет круглой, а другие теории предполагают, что она сжата вдоль различных осей и имеет сложную форму. Но для того чтобы увидеть различия, надо получить более чёткое её изображение.

Одна из дальнейших целей EHT — понять, почему, в отличие от других галактик, сверхмассивная чёрная дыра в центре Млечного Пути сравнительно тусклый объект — её яркость всего в несколько сотен раз больше яркости Солнца.

Оценки из астрофизических данных

Вне зависимости от теоретических рассуждений, в отсутствии опасности можно убедиться и с помощью накопленных на сегодня астрофизических данных.

Предположим, что, благодаря какому-то экзотическому механизму, микроскопические черные дыры всё же могут рождаться на LHC и оставаться стабильными. Тогда, проходя через обычное вещество, они будут его поглощать и из-за этого расти в размерах. Если такая черная дыра попадет внутрь Земли, то она быстро осядет в ее центре, начнет расти и в конце концов полностью разрушит Землю.

Однако если черные дыры могут рождаться на LHC, то они могут возникать и при бомбардировке Земли космическими лучами сверхвысоких энергий. Энергетический спектр космических лучей измерен хорошо; известно, что в них довольно часто встречаются и протоны с энергией выше 1017 эВ, что при столкновении с неподвижным протоном эквивалентно энергии LHC. Светимость таких столкновений с Землей за всё время ее жизни на несколько порядков превышает светимость LHC, поэтому рождение такой черной дыры в космических лучах даже более вероятно, чем на LHC. Поскольку Земля (да и другие небесные тела) дожили до наших дней и никакой катастрофы не случилось, значит, она не случится и в результате экспериментов на LHC.

В принципе, можно выдвинуть возражение к этой аргументации. Черные дыры, родившиеся в столкновении космических лучей с неподвижной частицей, будут лететь вперед с околосветовой скоростью. Даже пронзив Землю насквозь, они не успеют затормозиться и улетят в космическое пространство, не причинив Земле никакого заметного вреда. На LHC, в отличие от космических лучей, сталкиваются встречных пучки, и поэтому в принципе возможна (хотя очень маловероятна) ситуация, при которой рождается очень медленная черная дыра, со скоростью меньше первой космической скорости на Земле. Именно такая черная дыра сможет упасть внутри Земли и начнет ее поглощать.

Это возражение устраняется таким аргументом. Существуют компактные объекты, в которых плотность вещества на несколько порядков превосходит среднюю плотность Земли. Это белые карлики (плотность порядка 106 г/см3) и нейтронные звезды (плотность порядка 1014 г/см3). Черные дыры, возникающие при бомбардировке космическими лучами поверхности этих компактных объектов, быстро в них застревают и начинают их разрушать. Скорость разрушения может быть как большой, так и маленькой, в зависимости от конкретной теории гравитации. В первом случае это приводит к очень быстрому исчезновению звезды, что противоречит астрономическим наблюдениям (известны нейтронные звезды и белые карлики с возрастом в сотни миллионов лет). Во втором случае это не приведет ни к каким существенным изменениям, а это значит, что воздействие такой черной дыры на Землю будет на много порядков слабее и останется незаметным в течение миллиардов лет.

Вывод: даже если микроскопические черные дыры действительно могут родиться на LHC и упасть в центр Земли и даже если они при этом действительно начнут расти (что само по себе чрезвычайно маловероятно), то никакого ощутимого эффекта на свойства Земли за время жизни Солнца они не окажут.

Теория, не доказанная практикой

К сожалению, технологии человечества на данном этапе развития не позволяют нам проверить большинство теорий, разработанных астрофизиками и другими учеными. С одной стороны, существование черных дыр довольно убедительно доказано на бумаге и выведено с помощью формул, в которых все сошлось с каждой переменной. С другой, на практике нам пока не удалось увидеть воочию настоящую черную дыру.

https://youtube.com/watch?v=9LBZJqYqTD0

Несмотря на все разногласия, физики предполагают, что в центре каждой из галактик находится сверхмассивная черная дыра, которая собирает своей гравитацией звезды в скопления и заставляет путешествовать по Вселенной большой и дружной компанией. В нашей галактике Млечный путь по разным оценкам насчитывается от 200 до 400 миллиардов звезд. Все эти звезды вращаются вокруг чего-то, что обладает огромной массой, вокруг чего-то, что мы не можем увидеть в телескоп. С большой долей вероятности это черная дыра. Стоит ли ее бояться? – Нет, по-крайней мере не в ближайшие несколько миллиардов лет, но мы можем снять про нее еще один интересный фильм.

Невидимый спутник

Короткоживущие высокоэнергетические события, вызывающие гамма-всплески и гравитационные волны, могут быть видны на расстоянии половины Вселенной, но большую часть своей жизни черные дыры по самой своей природе будут почти необнаруживаемыми. Тот факт, что они не излучают ни света, ни других волн, означает, что они могли бы скрываться в наших космических окрестностях, а астрономы не знают об этом.

Однако есть один верный способ обнаружить черные дыры — это их гравитационное воздействие на другие звезды. При наблюдении за обычной на вид двойной системой HR 6819 в 2020 году астрономы заметили странности в движении двух видимых звезд, которые можно было бы объяснить, только если бы там был третий, полностью невидимый объект. Когда они вычислили его массу — по крайней мере в четыре раза больше, чем у Солнца, — то поняли, что остается только одна возможность. Это должна была быть черная дыра — ближайшая к Земле из всех обнаруженных, всего в тысяче световых лет внутри нашей Галактики.

Обычные черные дыры. Небольшие, но смертельные

Когда звезда сжигает свое последнее топливо, она сильно уменьшается в размерах. Небольшие звезды, имеющие массы примерно в три раза больше массы Солнца, превращаются в нейтронные звезды или белые карлики. Но когда коллапсирует звезда побольше, она продолжает сжиматься и создает обычную черную дыру.

Черные дыры, образованные коллапсом отдельных звезд относительно невелики. Но имеют невероятную плотность. Такой объект содержит три массы Солнца в области размером с небольшой город. Такая плотность материи приводит к возникновению колоссального гравитационного поля. Черные дыры поглощают пыль и газ из пространства вокруг себя. И поэтому растут в размерах.

Согласно данным исследования Гарвардско-Смитсоновского Центра астрофизики, наша галактика Млечный Путь содержит несколько сотен миллионов черных дыр.

Информационный парадокс черных дыр

Вы наверняка слышали, что черные дыры уничтожают информацию, которая в них попадает. Почему это является такой огромной проблемой для физики, что ученые всеми силами пытаются избавиться от этой нелепой и нелогичной формулировки? Что ж, мир стал довольно сложным. В моем детстве все было проще. Трава была зеленее, газировка вкуснее, а черные дыры были черными. То есть черные дыры сжимали материю и энергию в бесконечно плотные сингулярности, не создавая непреодолимых парадоксов. Это были хорошие дни.

Но им пришел конец. Сегодня черные дыры вмещают все пятьдесят оттенков серого, изгибая законы физики один за другим. Что же такое информационный парадокс черной дыры?

Для начала давайте поговорим об информации. Когда физики говорят «Информация», они имеют в виду конкретное состояние каждой частицы во вселенной: масса, положение, спин, температура и т. д. отпечаток пальца, который уникальным образом идентифицирует каждого, и вероятность того, что эти частицы собираются делать во вселенной. Вы можете взять атомы, раздавить их или сжать вместе, но квантово — волновая функция, которая их описывает, всегда будет сохраняться.

Квантовая физика позволяет вам запускать всю вселенную вперед и назад до тех пор, пока вы обращаете все в своей математике: заряд, четность и время

Это важно. Светлые умы говорят нам, что информация должна жить, несмотря ни на что

Представьте ее в виде энергии. Вы не можете уничтожить энергию: только преобразовать.

Что такое черная дыра? Она образуется, когда крупнейшая звезда с массой в 20 раз превышающей солнечную жестоко коллапсирует и взрывается. Ее плотность материи чрезвычайно высока, скорость убегания превышает скорость света. Особо прикольные имеют перегретый диск аккреции с материей, которая кружится вокруг горизонта событий черной дыры, за пределы которого свет уже не может вырваться никак.

И тут у нас появляется один из самых странных побочных эффектов относительности: замедление времени. Представьте себе часы, падающие в направлении черной дыры, которые засасывает гравитационный колодец. Время будет идти медленнее по мере приближения к черной дыре, пока наконец не замерзнет на краю горизонта событий. Фотоны от часов вытянутся, и цвет часов пройдет через красное смещение. В конце концов, он исчезнет, поскольку фотоны вытянутся за пределы того, что могут обнаружить наши глаза.

Лишь в том случае, если бы вы смотрели на черную дыру миллиарды лет, вы увидели бы все, что она собрала, что застряло внутри, как на липучке. Вы нашли бы и часы, и «Титаник», и теоретически смогли бы определить квантовое состояние каждой отдельной частицы и фотона, который попал в черную дыру. Поскольку потребуется практически бесконечное количество времени, чтобы все испарилось совершенно, все в порядке.

Информация навсегда на поверхности черной дыры сохраняется. Все, что туда попало, определенно погибло, но их информация, их драгоценная квантовая информация, в полном порядке.

В 1975 году Стивен хокинг сбросил на черные дыры бомбу. Он осознал, что у черных дыр есть температура, и с течением огромного периода времени они совершенно испарятся, выпустив массу и энергию обратно во вселенную. Этот процесс был обозначен как излучение хокинга.

Но эта же идея парадокс породила. Информация о том, что попало в черную дыру сохраняется замедлением времени, но сама масса черной дыры испаряется. В конце концов, она совершенно исчезнет, и тогда куда денется информация? Та информация, которая не может быть уничтожена?

Астрономы в шоке. Десятками лет они работают, пытаясь решить этот вопрос. Есть небольшой набор вариантов:

Черные дыры не испаряются вовсе, хокинг ошибся.
Информация в черной дыре каким-то образом утекает вместе с излучением хокинга.
Черная дыра удерживает ее до самого конца, и когда испаряются две последних частицы, вся информация внезапно высвобождается во вселенную.
Информация сжимается в микроскопическое пространство, которое остается после испарения черной дыры.
Черная дыра.

Возможно, физики никогда не смогут выяснить это. Недавно хокинг выдвинул новую идею, которая могла бы разрешить информационный парадокс черной дыры. Он предположил, что есть некий способ, которым излучение хокинга могло бы уносить в себе информацию о новой материи, падающей в черную дыру.

Таким образом, информация обо всем, что падает, сохраняется уходящим излучением, возвращается во вселенную и разрешает парадокс. Но это догадка, поскольку и само излучение хокинга никто не обнаружил. Возможно, мы через много десятков лет узнаем не только то, в правильном направлении мы движемся или нет, но и собственно решение парадокса.

В ситуациях вроде этой мы вспоминаем, как мало знаем о вселенной на самом деле.

Промежуточные черные дыры

Промежуточными черными дырами ученые называют объекты, масса которых значительно больше, чем масса обычной черной дыры, но гораздо меньше, чем у сверхмассивной черной дыры. Предполагается, что этих объектов на просторах Вселенной значительно меньше, чем других видов черных дыр, но доказательств их существования до сих пор не было обнаружено, так как их нелегко наблюдать. Судите сами – им не предшествует взрыв сверхновой, как это часто бывает с обычными черными дырами. Кроме того, они меньше и менее активны, чем сверхмассивные черные дыры, с меньшим гравитационным притяжением. Это означает, что чтобы действительно увидеть промежуточную черную дыру, необходимо искать эффекты, которые она может оказать на свое окружение.

Первые свидетельства о существовании «златовласки» пришли на Землю в виде света, искаженного Большим взрывом, когда Вселенная только-только зарождалась. В ходе работы ученые просмотрели информацию о тысячах вспышек, вызванных коллапсом или слиянием звезд, в надежде использовать одну из них, чтобы заглянуть в раннюю Вселенную.

Первая фотография тени черной дыры была получена в 2019 году.

Как выяснили астрофизики в ходе работы, один из обнаруженных всплесков, по-видимому, был подвержен гравитационному линзированию объектом, масса которого была в несколько десятков тысяч раз больше, чем масса нашего Солнца. Это говорит о том, что, скорее всего, линзирование было вызвано одной из черных дыр средней массы – именно эти объекты ученые искали на протяжении многих лет.

Во Вселенных множество объектов, которые нельзя увидеть с помощью телескопов, улавливающих видимый свет.

Если обнаруженный астрофизиками объект действительно является промежуточной черной дырой, то уже в скором будущем ученые смогут оценить количество таких объектов в наблюдаемой Вселенной. Отмечу, что впервые физики предсказали существование промежуточных черных дыр больше тридцати лет назад.

Открытие также может объяснить таинственный рост сверхмассивных черных дыр, подобных той, что находится в центре нашей галактики.

Необходимо также отметить, что помимо гравитационного линзирования существуют и другие способы обнаружения промежуточных кандидатов в черные дыры. Например, в 2020 году NASA сообщило о промежуточной черной дыре аналогичного размера (ее масса в 50 000 больше массы нашего Солнца), которая стала источником вспышки рентгеновского излучения после того, как звезда, которая подошла к ней слишком близко, была разорвана на части.

А в 2019 году астрономы обнаружили сигнал гравитационной волны (GW190521) от слияния двух черных дыр. Слияние привело к образованию более массивной черной дыры, которая с ее 142 солнечными массами также считается промежуточной.

Самые яркие объекты во Вселенной

Наш мир – совокупность парадоксов. Иногда в нем уживаются вещи, сосуществование которых не поддается никакой логике. Например, термин «черная дыра» не будет ассоциироваться у нормального человека с выражением «невероятно яркий», однако открытие начала 60-х годов прошлого века позволило ученым считать это утверждение неверным.

С помощью телескопов астрофизикам удалось обнаружить неизвестные до того момента объекты на звездном небе, которые вели себя совсем странно несмотря на то, что выглядели, как обычные звезды

Изучая эти странные светила, американский ученый Мартин Шмидт обратил внимание на их спектрографию, данные которой показывали отличные от сканирования других звезд результаты. Проще говоря, эти звезды не были похожи на другие, привычные нам

Внезапно Шмидта осенило, и он обратил внимание на смещение спектра в красном диапазоне. Оказалось, что эти объекты намного дальше от нас, чем те звезды, что мы привыкли наблюдать в небе

Например, наблюдаемый Шмидтом объект был расположен в двух с половиной миллиардах световых лет от нашей планеты, но светил так же ярко, как и звезда в каких-нибудь сотне световых лет от нас. Получается, свет от одного такого объекта сопоставим с яркостью целой галактики. Такое открытие стало настоящим прорывом в астрофизике. Ученый назвал эти объекты «quasi-stellar» или просто «квазар».

Мартин Шмидт продолжил изучение новых объектов и выяснил, что столь яркое свечение может быть вызвано только по одной причине – аккреции. Аккреция – это процесс поглощения сверхмассивным телом окружающей материи с помощью гравитации. Ученый пришел к выводу, что в центре квазаров находится огромная черная дыра, которая с невероятной силой втягивает в себя окружающую ее в пространстве материю. В процессе поглощения дырой материи, частицы разгоняются до огромных скоростей и начинают светиться. Своеобразный светящийся купол вокруг черной дыры называется аккреационным диском. Его визуализация была хорошо продемонстрирована в киноленте Кристофера Нолана «Интерстеллар», которая породила множество вопросов «как черная дыра может светиться?».

На сегодняшний день ученые нашли на звездном небе уже тысячи квазаров. Эти странные невероятно яркие объекты называют маяками Вселенной. Они позволяют нам чуть лучше представить устройство космоса и ближе подойти к моменту, с которого все началось.

• Несмотря на то, что астрофизики уже много лет получали косвенные доказательства существования сверхмассивных невидимых объектов во Вселенной, термина «черная дыра» не существовало вплоть до 1967 года. Чтобы избежать сложных названий, американский физик Джон Арчибальд Уиллер предложил назвать такие объекты «черными дырами». Почему бы и нет? В какой-то мере они черные, ведь мы их не можем увидеть. К тому же они все притягивают, в них можно упасть, прямо как в настоящую дыру. Да и выбраться из такого места согласно современным законам физики просто невозможно. Впрочем, Стивен Хокинг утверждает, что при путешествии сквозь черную дыру можно попасть в другую Вселенную, другой мир, а это уже надежда.

Методы обнаружения

Рассмотрим методы, которые астрономы используют для обнаружения черной дыры:

  • ЧД возможно зарегистрировать в том случае, когда она притягивает окружающую ее материю, будь то звездное вещество соседней звезды или газовое облако, через которое движется черная дыра. Компьютерное моделирование показывает падение звезды в черную дыру В таком случае видимое вещество начнет стягиваться к массивному объекту, образую вокруг него аккреционный диск. То есть диск быстровращающейся разогретой материи. В некоторых случаях вращающаяся вокруг ЧД материя может плотно перекрывать черную дыру, тем самым визуально образуя огромную светящуюся сферу.
  • Метод гравитационного возмущения позволяет определить наличие ЧД по ее гравитационному влиянию на окружающие тела. К примеру, если траектория движения планеты вокруг некоторой звезды не согласуется с теоретическими подсчетами орбиты этой планеты, а имеет некоторое искажение, можно предположить о наличии массивного объекта вблизи планеты, который влияет на ее траекторию. Данный частный случай упрощен, так как подобные ситуации позволяют обнаружить менее массивные объекты, вроде других планет. Черные дыры же могут искажать траекторию огромных облаков газа.

  • Возвращаясь к изменению траектории электромагнитного излучения вблизи черной дыры, следует отметить одно из явлений, которое также позволяет обнаружить ЧД – гравитационное линзирование. Свет, проходящий около границ черной дыры, несколько изменяет свою траекторию, создавая таким образом размытую или искаженную картинку, а иногда даже продублированное изображение космических тел. Таким образом, черная дыра, расположенная на фоне какого-либо скопления, вроде галактики или туманности, дает аномальное изображение этого скопления, что привлекает астрономов и дает повод начать поиски ЧД в этой области небосвода.

Помимо упомянутых выше методов, ученые часто связывают такие объекты как черные дыры и квазары. Квазары – некие скопления космических тел и газа, которые являются одними из самых ярких астрономических объектов во Вселенной. Так как они обладают высокой интенсивностью свечения при относительно малых размерах, есть основания предполагать, что центром этих объектов есть сверхмассивная черная дыра, притягивающая к себе окружающую материю. В силу столь мощного гравитационного притяжения притягиваемая материя настолько разогрета, что интенсивно излучает. Обнаружение подобных объектов обычно сопоставляется с обнаружением черной дыры. Иногда квазары могут излучать в две стороны струи разогретой плазмы – релятивистские струи. Причины возникновения таких струй (джет) не до конца ясны, однако вероятно они вызваны взаимодействием магнитных полей ЧД и аккреционного диска, и не излучаются непосредственной черной дырой.

Джет в галактике M87 бьющий из центра ЧД

Подводя итоги вышесказанного, можно представить себе, как выглядит черная дыра в космосе вблизи: это сферический черный объект, вокруг которого вращается сильно разогретая материя, образуя светящийся аккреционный диск.

Что будет, если попасть в черную дыру

Человечеству не суждено описать или задокументировать данное явление. Невозможно понять происходящие события в космической аномалии – в этом состоит главная проблема.

Однако, падение за горизонт событий, где нет материи, вполне возможно. Даже человек мог бы попасть в нее, но его ждет, по мнению многих фантастов, мало приятного из-за огромной гравитационной силы. На самом деле произойти может все что угодно.

Горизонт событий, где время и пространство искажается, станет отображением нескольких вариаций будущего для путешественника. Возможно, за точкой невозврата будет открытие нового мира, параллельной вселенной.

Черная дыра ведет в темные, еще неведанные глубины космоса, а если подумать, что все в мире сбалансировано, то в конечном итоге она может вывести к новой звезде. Смерть планеты – черная дыра, но она же может стать и рождением новой галактики.