Теория относительности

[править] Основные принципы

Фундаментальная идея общей теории относительности состоит в том, что мы не можем говорить о физическом смысле скоростей или ускорений без определения системы отсчета. В специальной теории относительности утверждается, что система отсчета может быть расширена бесконечно на все направления в пространстве и времени. Это потому, что специальная теория относительности ассоциируется именно с инерционными системами отсчета. Общая теория относительности утверждает, что система отсчета может быть только локальной, справедливой лишь для ограниченной области пространства и промежутка времени (точно так же, как можно нарисовать плоскую карту географического региона, но из-за искривления поверхности Земли плоская карта всей планеты будет обязательно искажена). В общей теории относительности, законы Ньютона остаются справедливыми лишь в локальных системах отсчета. Например, свободные частицы в локальных инерциальных (лоренцевых) системах движутся вдоль прямых линий. Но эти линии являются прямыми лишь в пределах системы отсчета. На самом деле они не являются прямыми, они являются линиями, известными как геодезические. Таким образом, первый закон Ньютона заменяется «геодезическим» законом движения.

В инерциальных системах отсчета, тело сохраняет свое состояние до тех пор, пока на него не подействуют внешние силы. В неинерциальных системах отсчета, тела приобретают ускорение не от воздействия на них других тел, а непосредственно от самой системы отсчета. Именно поэтому мы чувствуем на себе действие ускорения, находясь в автомобиле, который вращается. Здесь автомобиль является базисом неинерциальной системы отсчета, в которой мы находимся. Такую же природу имеет сила Кориолиса, если как систему отсчета выбрать тело, которое вращается, например, Землю. Принцип эквивалентности в общей теории относительности постулирует, что никакие локальные эксперименты не обнаружат разницы между свободным падением в гравитационном поле и соответствующим по характеристикам ускоренным движением.

Математически, Эйнштейн смоделировал пространство-время с помощью четырехмерного псевдориманова многообразия, и его уравнения гравитационного поля утверждают, что искривленность этого многообразия в произвольной точке непосредственно связана с тензором энергии-импульса. Этот тензор соответствует плотности вещества и энергии в этой точке. Итак, искривление пространства-времени приводит в движение материи, а материи, с другой стороны, является причиной искривления пространства-времени.

В одном из вариантов Уравнения Эйнштейна для гравитационного поля содержат параметр, который называют космологической постоянной. Эйнштейн ввел ее для того, чтобы получить как решение этих уравнений модель статичной Вселенной, то есть такой, которая не расширяется и не сжимается. Это не имело должного эффекта, ведь такая статическая вселенная является нестабильной, а дальнейшие астрономические наблюдения подтвердили, что наша Вселенная расширяется. Поэтому позже Эйнштейн назвал введение космологической постоянной «своей самой большой ошибкой». Однако, полученные в конце 20 века новые астрономические данные требуют ненулевого значения космологической постоянной для объяснения результатов наблюдений.

Литература

  • Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900—1915). — М.: Наука, 1981. — 352c.
  • Визгин В. П. Единые теории в 1-й трети XX в. — М.: Наука, 1985. — 304c.
  • Иваненко Д. Д., Сарданашвили Г. А. Гравитация. 3-е изд. — М.: УРСС, 2008. — 200с.
  • Мизнер Ч., Торн К., Уилер Дж. Гравитация. — М.: Мир, 1977.
  • Торн К. Чёрные дыры и складки времени. Дерзкое наследие Эйнштейна. — М.: Государственное издательство физико-математической литературы, 2009.
  • Halliday, David; Robert Resnick; Kenneth S. Krane. Physics v. 1. — New York: John Wiley & Sons, 2001. — ISBN 978-0-471-32057-9.
  • Tipler, Paul. Physics for Scientists and Engineers: Mechanics, Oscillations and Waves, Thermodynamics (англ.). — 5th. — W.H. Freeman (англ.)русск., 2004. — ISBN 978-0-7167-0809-4.

Смысл формулы Эйнштейна: связь энергии и массы

Как это работает? Например: жаба греется на солнце, девушки в бикини играют в волейбол, вокруг красота. Почему все это происходит? Прежде всего, из-за термоядерного синтеза, который протекает внутри нашего Солнца.

Там атомы водорода сливаются, образуя гелий. На других звездах протекают такие же реакции или реакции с более тяжелыми элементами, но суть остается той же. В результате реакции выделяется энергия, которая летит к нам в виде света, тепла, ультрафиолетового излучения и космических лучей.

Откуда берется эта энергия? Дело в том, что масса двух вступивших в реакцию атомов водорода больше, чем масса образовавшегося в результате атома гелия. Эта разница масс и превращается в энергию!

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Еще один пример — механизм работы ядерного реактора.

Термоядерный синтез на Солнце неуправляемый. Люди уже освоили этот тип синтеза на Земле и построили водородную бомбу. Если бы мы могли замедлить реакцию и получить управляемый термоядерный синтез, у нас был бы практически неиссякаемый источник энергии.

Тонкие эффекты гравитации

Измерение кривизны пространства на орбите Земли (рисунок художника)

Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и поэтому их обнаружение и экспериментальная проверка весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.

Среди них, в частности, можно назвать увлечение инерциальных систем отсчёта (или эффект Лензе — Тирринга) и гравитомагнитное поле. В 2005 году автоматический аппарат НАСА Gravity Probe B провёл беспрецедентный по точности эксперимент по измерению этих эффектов вблизи Земли. Обработка полученных данных велась до мая 2011 года и подтвердила существование и величину эффектов геодезической прецессии и увлечения инерциальных систем отсчёта, хотя и с точностью, несколько меньшей изначально предполагавшейся.

После интенсивной работы по анализу и извлечению помех измерений, окончательные итоги миссии были объявлены на пресс-конференции по NASA-TV 4 мая 2011 года и опубликованы в Physical Review Letters. Измеренная величина геодезической прецессии составила −6601,8±18,3 миллисекунды дуги в год, а эффекта увлечения — −37,2±7,2 миллисекунды дуги в год (ср. с теоретическими значениями −6606,1 mas/год и −39,2 mas/год).

Теория относительности Эйнштейна кратко

Эйнштейн и еще один ученый, Хендрик Лоренц выяснили, что есть только один способ объяснить, как все это может быть. Это возможно только в том случае, если время замедляется.

Представьте, что произойдет, если время замедлится для вас, а вы при этом не знаете, что двигаетесь медленнее.Вам будет казаться, что все остальное происходит быстрее, всё вокруг вас будут двигаться, как в фильме в быстрой перемотке.

Итак, теперь давайте представим, что вы снова при ливне с ветром. Как такое возможно, что дождь будет воздействует на вас одинаково, даже если вы бежите? Выходит если бы вы пытались убежать от дождя, то ваше время бы замедлилось, а дождь — ускорился. Капли дождя попадали бы вам на спину с такой же скоростью. Ученые называют это расширение времени. Независимо от того, насколько быстро вы двигаетесь, ваше время замедляется, по крайней мере для скорости света это выражение справедливо.

1904 год: измерение света с движущегося поезда

Это было непросто. Эйнштейн пробовал любое решение, которое приходило ему в голову, но ничего не работало. Почти отчаявшись, он начал раздумывать, но простым, однако радикальным решением. Возможно, уравнения Максвелла работают для всего, подумал он, но скорость света всегда была постоянной.

Другими словами, когда вы видите пролетающий пучок света, не имеет значения, будет ли его источник двигаться к вам, от вас, в сторону или еще куда-нибудь, и не имеет значения, насколько быстро движется его источник. Скорость света, которую вы измерите, всегда будет 300 000 километров в секунду. Помимо всего прочего, это означало, что Эйнштейн никогда не увидит стационарных колеблющихся полей, поскольку никогда не сможет поймать луч света.

Это был единственный способ, который увидел Эйнштейн, чтобы примирить уравнения Максвелла с принципом относительности. На первый взгляд, впрочем, это решение имело собственный роковой недостаток. Позже он объяснил его другим мысленным экспериментом: представьте себе луч, который запускается вдоль железнодорожной насыпи, в то время как поезд проходит мимо в том же направлении со скоростью, скажем, 3000 километров в секунду.

Некто стоящий возле насыпи должен будет измерить скорость светового луча и получить стандартное число в 300 000 километров в секунду. Но кто-то на поезде будет видеть свет, движущийся со скоростью 297 000 километров в секунду. Если скорость света непостоянна, уравнение Максвелла внутри вагона должно выглядеть иначе, заключил Эйнштейн, и тогда принцип относительности будет нарушен.

Это кажущееся противоречие заставило Эйнштейна задуматься почти на год. Но затем, в одно прекрасное утро в мае 1905 года, он шел на работу со своим лучшим другом Мишелем Бессо, инженером, которого он знал со студенческих лет в Цюрихе. Двое мужчин говорили о дилемме Эйнштейна, как и всегда. И вдруг Эйнштейн увидел решение. Он работал над ним всю ночь, и когда следующим утром они встретились, Эйнштейн сказал Бессо: «Спасибо. Я полностью решил проблему».

Частые вопросы

Происходит ли движение с ускорением при воздействии гравитации — ответить на этот вопрос поможет следующий мысленный эксперимент. Можно представить, что человек находится в свободно падающем лифте. Тогда он и все предметы будут испытывать невесомость и двигаться так, как если бы находились в космосе и перемещались с постоянной скоростью.

Отличить эти два состояния невозможно. Движение под действием гравитации в четырёхмерном континууме является равномерным. Но с точке зрения людей выглядит ускоряющимся. Так происходит из-за того, что массивные тела искажают пространство-время. Таким образом гравитация является не силой, а искажением пространства-времени.

Иногда искривление поясняют следующим образом. Можно представить двумерную упругую поверхность, на которой расположены массивные тела, продавливающие её. Если мимо них равномерно движутся тела, то они будут двигаться, повторяя изгибы поверхности.

Чёрная дыра в рамках этого иллюстративного образа выглядит как очень тяжёлый объект, продавливающий настолько сильно, что края углубления сомкнулись. Таким образом то, что попало внутрь пузыря уже не имеет шансов вырваться наружу.

Возникает вопрос о том, насколько приведённые в статье удивительные рассуждения и мысленные эксперимент соответствуют реальности. Несмотря на то, что на первый взгляд, в теории много непривычного и странного, тем не менее наука находит всё больше подтверждений.

Надо понимать, что наиболее полно описанные эффекты проявляются на скоростях, близких скорости и света и в гигантских космических масштабах. Учёные проверяют то, что следует из этой теории. Современное состояние науки и техники предоставляет возможность убедительно подтвердить основные положения теории.

Например, известно, что свет должен огибать тела вследствие существования гравитационных искажений. При наблюдениях в космосе обнаружено, что становятся видны дальние объекты, которые на самом деле должны быть заслонены ближними. Это происходит из-за того, что свет от них идущий, огибает препятствия.

Сильная гравитация вызывает замедление времени. GPS и ГЛОНАСС для своей работы должны использовать очень точное время. Им приходится учитывать замедление времени, возникающее из-за гравитации

Если бы они не обращали на это внимание, то погрешность определения точки на поверхности Земли могла превышать 10 км

Предсказание существования чёрных дыр — заслуга теории относительности. У этих объектов гравитация настолько сильна, что время там полностью останавливается. Если свет попадает к ней, то наружу он выйти не может. Астрономы подтвердили существование чёрных дыр при помощи современных методов исследования.

Учёные многократно проводили точное измерение скорости света от различных источников. Всегда получалась одна и та же величина. Например, свет, излучаемый Солнцем или далёкой звездой, на первый взгляд, должен иметь определённые различие в скорости. Современная техника позволяет произвести измерения с очень высокой точностью, но было обнаружено, что эти значения совпадают.

В статье приведены примеры, помогающие понять базовые принципы устройства пространственно-временного континуума. На самом деле речь идёт только об основных понятиях. Теория значительно более сложна, имеет строгое обоснование и подтверждается современными научными данными.

[править] Связь со специальной теорией относительности

Специальная теория относительности внесла фундаментальные изменения в законы классической механики, исходя из следующих постулатов

  • все инерционные системы отсчета равноправны;
  • скорость света во всех инерциальных системах одинакова.

Из этих постулатов следует, что скорость света является максимально возможной в природе. Любой материальный объект не может двигаться быстрее света.

С точки зрения специальной теории относительности пространство и время тесно связаны между собой. Их следует считать единственным четырехмерным многообразием, которое называется «пространство-время». Наблюдатели, движущиеся друг относительно друга, могут по-разному определять «пространственные» и «временные» направления в этом многообразии. Поэтому пространство и время больше невозможно рассматривать как отдельные сущности.

Общая теория относительности дополнила эту картину тем, что энергия гравитационного поля (порожденная материей) способна деформировать пространство-время так, что «прямые» линии в пространстве и времени имеют свойства «кривых» линий.

История и корни теории

На сегодняшний день в подавляющем большинстве случаев достижения великого Эйнштейна кратко называют полным отрицанием того, что изначально было непоколебимой константой. Именно это открытие позволило опровергнуть известную всем школьникам силу притяжения или гравитацию как физический бином.

Большинство населения планеты, так или иначе, внимательно и вдумчиво или поверхностно, пусть даже однажды, обращалось к страницам великой книги – Библии.

Именно в ней можно прочесть о том, что стало истинным подтверждением сути учения – того, над чем работал в начале прошлого века молодой американский ученый. Факты левитации другие достаточно привычные вещи в ветхозаветной истории однажды стали чудесами в новое время. Эфир – пространство, в котором человек жил совершенно иной жизнью. Особенности жизни в эфире изучали многие мировые знаменитости в области естественных наук. И теория гравитации Эйнштейна подтвердила, что описанное в древней книге – это правда.

Работы Хендрика Лоренца и Анри Пуанкаре позволили экспериментальным путем обнаружить те или иные особенности эфира. В первую очередь это работы по созданию математических моделей мира. Основой было практическое подтверждение того, что при движении материальных частиц в эфирном пространстве происходит их сокращение относительно направления движения.

Труды этих великих ученых позволили создать фундамент для главных постулатов учения. Именно данный факт дает постоянный материал для утверждения, что труды Нобелевского лауреата и релятивистская теория Альберта были и остаются плагиатом. Многие ученые и сегодня утверждают, что многие постулаты, были приняты намного раньше, например:

  • Понятие условной одновременности событий,
  • Принципы гипотезы о постоянном биноме и критериях скорости света.

Что сделать, чтобы понять теорию относительности? Суть кроется в прошлом. Именно в трудах Пуанкаре было высказана гипотеза относительно того, что большие скорости в законах механики Ньютона нуждаются в переосмыслении. Благодаря высказываниям французского физика ученый мир узнал о том, насколько относительно движение в проекции к теории эфирного пространства.

В статической науке рассматривался большой объем физических процессов для различных материальных объектов, движущихся с равномерной скоростью. Постулаты общей концепции описывают процессы, происходящие с ускоряющимися объектами, объясняют существование частиц гравитонов и собственно гравитации. Суть теории относительности в пояснении тех фактов, которые ранее были нонсенсом для ученых. В случае необходимости описания особенностей движения и законов механики, соотношений пространства и временного континуума в условиях приближения к скорости света следует применять постулаты исключительно учения относительности.

Теория относительности простыми словами для чайников

Раньше, до её создания, считалось, что существует три пространственных измерения и одно временное, причём они полностью независимы друг от друга. На самом деле оказалось, что они представляют собой единый четырёхмерный пространственно-временной континуум.

Прежде считалось, что гравитация, это сила, действующая между объектами, величина которой зависит от их массы. Теория относительности объяснила это явление иначе. Оказалось, что объекты своей массой искривляют пространственно-временной континуум, а сила гравитации — следствие этого.

Теория получила своё название от принципа относительности. Когда человек видит движущийся предмет. То это означает, что он перемещается относительно него. Если он движется с той же скоростью и в том же направлении, то для него предмет будет находиться в покое.

Однако теория утверждает, что скорость света является исключением. Она остаётся постоянной в любой системе координат. Этот принцип можно проиллюстрировать следующим мысленным экспериментом.

Если есть корабль, летящий со скоростью света и он испускает свет в направлении своего движения, то скорость последнего будет равна скорости света в вакууме. Неподвижный наблюдатель видит скорость, с которой летит корабль и испущенный им свет. Оба объекта будут иметь одну и ту же скорость. Свет не будет двигаться быстрее.

Специальная теория относительности рассматривает процессы, происходящие в движущихся с постоянной скоростью системах координат. Общая рассматривает также эффекты, которые связаны с ускорением или явлениями гравитации. Теория относительности считает, что законы природы проявляются одинаково в любой равномерно движущейся или находящейся в покое системе координат.

В этом видеоролике можно подробно узнать о парадоксах теории относительности:

Однородность вселенной

Астрономам и астрофизикам известен факт, что во время полного солнечного затмения можно наблюдать объекты, которые наше Солнце закрывает собой. Исходя из позиций однородного пространства, это просто невозможно. Так как электромагнитные волны в однородном пространстве должны распространяться прямолинейно. Объяснение этому феномену было дано такое: Массивный космический объект, которым является солнце, влияет на прямолинейное распространение световых волн, искривляя их траекторию, в результате чего мы в состоянии наблюдать то, что находится за ним. 

Но если считать, что пространство однородно, его свойства и качества неизменны, то подобное наблюдение становится невозможным.  

Вот исследование, которое не оставляют камня на камне на фундаменте однородности пространства.  

Астрофизики  Джордж Нодланд и Джон Ралстон в 1997 году опубликовали в научном журнале Ревьюз оф Вордсфизикс уникальные данные. Проанализировав радиоволны, пришедшие от 160 отдалённых галактик, они сделали вывод, что излучения вращаются по мере того, как они движутся сквозь пространство, в виде едва заметного рисунка, напоминающего штопор. По наблюдению с Земли ось вращения проходит в одном направлении, в сторону созвездия Секстанс, и в другом направлении — в сторону созвездия Акуилла. По факту это экспериментальное подтверждение того, что у Вселенной есть верх и низ.  

Случайно ли так получилось, что всему человечеству были навязаны ложные представления о природе вселенной?

Дополнительные материалы в видео на основе статьи:

Примечания

  1. Вайнберг С. Первые три минуты. — М.: Энергоиздат, 1981. — С. 135.
  2. Нарликар Дж. Неистовая вселенная. — М.: Мир, 1985. — С. 25. — Тираж 100 000 экз.
  3. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 144. — Тираж 50 000 экз.
  4. Сивухин Д. В. Общий курс физики. Механика. — М., Наука, 1979. — Тираж 50 000 экз. — с. 311.
  5. В. Паули Нарушение зеркальной симметрии в законах атомной физики // Теоретическая физика 20 века. Памяти Вольфганга Паули. — М., ИЛ, 1962. — c. 383
  6. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G. M. Tino. . Nature (18 июня 2014).
  7. Нарликар Дж. Неистовая вселенная. — М.: Мир, 1985. — С. 70. — Тираж 100 000 экз.
  8. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 87. — Тираж 50 000 экз.
  9. См. аналогию между слабым гравитационным полем и электромагнитным полем в статье гравитомагнетизм.
  10. Канонической эта теория является в том смысле, что она наиболее хорошо разработана и широко используется в современной небесной механике, астрофизике и космологии, причём количество надёжно установленных противоречащих ей экспериментальных результатов практически равно нулю.
  11. Иваненко Д. Д., Пронин П. И., Сарданашвили Г. А. Калибровочная теория гравитации. — М.: Изд. МГУ, 1985.
  12. Brans, C. H.; Dicke, R. H. (November 1 1961). «Mach’s Principle and a Relativistic Theory of Gravitation». Physical Review 124 (3): 925—935. DOI:10.1103/PhysRev.124.925. Retrieved on 2006-09-23.
  13. С ортодоксальной точки зрения это уравнение представляет собой координатное условие.
  14. Яворский Б. М., Детлаф А. А., Лебедев А. К. Справочник по физике для инженеров и студентов вузов. — М.: Оникс, 2007. — С. 948. — ISBN 978-5-488-01248-6 — Тираж 5100 экз.
  15. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 145. — Тираж 50 000 экз.
  16. Вайнберг С. Первые три минуты. — М.: Энергоиздат, 1981. — С. 136.

Чем отличается специальная теория относительности от общей теории относительности?

  1. Специальная теория относительности (СТО была создана в 1905 году): существуют одни и те же законы природы для всех систем отсчёта, которые движутся с постоянной скоростью; эта теория исследует физические процессы равномерно движущихся тел.
  2. Общая теория относительности (ОТО была создана в 1915 году): тот же принцип, что у специальной, но включая любые системы отсчёта даже те, что движутся с ускорением; эта теория исследует ускоряющиеся тела и описывает возникновение гравитации.

Система отсчёта — это совокупность тела отсчёта, системы координат и отсчёта времени (они связаны с телом, и относительно него рассматривается движение или равновесие других тел или точек).

Движение тел и материи должно находиться в пределах параметров времени и пространства.

Загадка Меркурия

Теория относительности помогла когда-то решить одну весьма сложную проблему. А именно — загадку орбиты Меркурия. Самая близкая к Солнцу планета ну никак не хотела летать вокруг светила по траектории, предсказываемой теориями Ньютона. А вот теория Эйнштейна вполне правильно предсказывает фактическую орбиту этой планеты.

Разгадка тайны Меркурия заключалась в представлении гравитации как эффекта геометрии пространства. Или, технически, пространства-времени. Поскольку более ранние работы Эйнштейна показали, что пространство и время неразделимы. В работах Эйнштейна говорилось, что гравитация — это не взаимное притяжение тел. А скорее результат искажения массой окружающего ее пространства-времени. Объекты вращаются друг вокруг друга или падают на другое массивное тело в зависимости от того, насколько сильно искривлено пространство-время вокруг них. Вместо того, чтобы реагировать на какую-то силу притяжения, массы просто следуют контурам геометрии пространства-времени.

Подобное представление гравитации привело к одному очень известному предсказанию. Которое было подтверждено в затмении, случившемся в 1919 году. Эйнштейн указал на то, что искривление пространства-времени вблизи Солнца приведет к искривлению пути света от далеких звезд. И это изменит их видимое положение на небе. Это предсказание даже вдохновило отправку целой экспедиции на западноафриканский остров Принсипи. Она прибыла туда в мае 1919 года. Во главе миссии стоял британский астрофизик Артур Эддингтон. Команда Эддингтона обнаружила, что положения нескольких звезд действительно сместились на величину, предсказанную математикой Эйнштейна.

Важнейшие выводы из уравнения

Из уравнения Эйнштейна следуют 3 важнейших следствия:

  1. Массы в покое имеют присущую им энергию. Это важный вывод для понимания того, как устроена Вселенная. Согласно ему, гравитация, которая существует между любыми двумя массами во Вселенной, работает на основе энергии, эквивалентной массе через формулу Эйнштейна.
  2. Масса может быть преобразована в чистую энергию. Уравнение помогает точно рассчитать, сколько энергии будет получено в процессе преобразования массы. Примером может служить процесс ядерной реакции: в ходе реакции получается, что начальная масса больше конечной. Разницей в количестве масс как раз является высвобожденная энергия. Количество уменьшающейся массы в данном примере становится энергией, которая рассчитывается по формуле E\;=\;mc².
  3. Энергию можно использовать для того чтобы сделать массу из ничего. Именно этим занимаются ученые, которые в Большом адронном коллайдере в CERN ищут новые, высокоэнергетические частицы, создавая их из чистой энергии. Получаемая масса частиц исходит из имеющейся энергии, рассчитываемой по формуле Эйнштейна.