Содержание
- Локализация
- Теория семи струн кратко и понятно. Объяснение материи и массы
- Теория струн и петлевой квантовой теории гравитации. Что было до Большого взрыва и откуда взялось время? В
- Описание Теории Струн простым языком
- Колдовство
- Теория струн и свойства частиц
- SpaceX
- В чем ценность теории струн?
- Время
- История озарения
- Квантовые поля
Локализация
В этом случае дополнительные измерения не такие и маленькие, но почему-то все частицы нашей реальности локализовались на поверхности четырёхмерной в многомерной Вселенной. Уйти с этой поверхности они не могут. Такая поверхность (лист) именуется брана, и она – часть наблюдаемой Вселенной. Но и все мы, и то, что нас окружает, составлено из частиц, поэтому нам не удаётся взглянуть вы другие измерения. Только гравитация может поспособствовать увидеть дополнительные измерения. Так как она – следствие искривленного пространства-времени, и не зациклена на бране, то и гравитоны (если они существуют) должны «выходить» в другие измерения. Видимостью этого процесса станет неожиданное пропадание энергии, унесенных такими частицами.
Теория семи струн кратко и понятно. Объяснение материи и массы
Одна из основных задач современных исследований – поиск решения для реальных частиц.
Теория струн начиналась как концепция, описывающая такие частицы, как адроны, различными высшими колебательными состояниями струны. В большинстве современных формулировок, материя, наблюдаемая в нашей вселенной, является результатом колебаний струн и бран с наименьшей энергией. Вибрации с большей порождают высокоэнергичные частицы, которые в настоящее время в нашем мире не существуют.
Масса этих элементарных частиц является проявлением того, как струны и браны завернуты в компактифицированных дополнительных измерениях. Например, в упрощенном случае, когда они свернуты в форме бублика, называемом математиками и физиками тором, струна может обернуть эту форму двумя способами:
- короткая петля через середину тора;
- длинная петля вокруг всей внешней окружности тора.
Короткая петля будет легкой частицей, а большая – тяжелой. При оборачивании струн вокруг торообразных компактифицированных измерений образуются новые элементы с различными массами.
Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Свернутые измерения здесь гораздо сложнее тора, но в принципе они работают также.
Возможно даже, хотя это трудно представить, что струна оборачивает тор в двух направлениях одновременно, результатом чего будет другая частица с другой массой. Браны тоже могут оборачивать дополнительные измерения, создавая еще больше возможностей.
Теория струн и петлевой квантовой теории гравитации. Что было до Большого взрыва и откуда взялось время? В
теор
Вопросы, вынесенные в заголовок, обычно физиками не
обсуждаются, поскольку общепринятойтеории, способной на них
ответить, пока нет. Однако недавно в рамках петлевой квантовой
гравитации всё же удалось проследить эволюцию упрощенной модели
Вселенной назад во времени, вплоть до момента Большого взрыва, и
даже заглянуть за него. Попутно выяснилось, как именно в этой модели
возникает время.
Наблюдения за Вселенной показывают, что и на самых больших
масштабах она вовсе не неподвижна, аэволюционирует с течением времени. Если на основе
современныхтеорий проследить эту эволюцию назад во времени, то
окажется, что наблюдаемая ныне часть Вселенной была раньше горячее и
компактнее, чем сейчас, а начало ей далБольшой
взрыв— некий процесс возникновения Вселенной из
сингулярности: особой ситуации, для которой современные законы
физики неприменимы.
Физиков такое положение вещей не устраивает: им хочется понять и сам процесс Большого взрыва. Именно поэтому сейчас
предпринимаются многочисленные попытки построитьтеорию, которая
была бы применима и к этой ситуации. Поскольку в первые мгновения
после Большого взрыва самой главной силой была гравитация,
считается, что достичь этой цели возможно только в рамках
непостроенной пока квантовойтеории гравитации .
Одно время физики надеялись, что квантовая гравитация будет
описана с помощьютеории суперструн, нонедавний
кризиссуперструнныхтеорий поколебал эту уверенность. В такой
ситуации больше внимания стали привлекать иные подходы к описанию
квантовогравитационных явлений, и в частности, петлевая квантовая
гравитации .
Именно в рамках петлевой квантовой гравитации недавно был получен
очень впечатляющий результат. Оказывается, из-за квантовых эффектов начальная сингулярность исчезает . Большой взрыв перестает
быть особой точкой, и удается не только проследить его протекание,
но и заглянуть в то, что было до Большого взрыва. Краткое описание
этих результатов было недавно опубликовано в статье
A. Ashtekar, T. Pawlowski, P. Singh,Physical Review Letters, 96, 141301
(12 April 2006), доступной также какgr-qc/0602086, а их подробный вывод изложен в
вышедшем на днях препринте этих же авторовgr-qc/0604013.
Петлевая квантовая гравитация принципиально отличается от обычных
физическихтеорий и даже оттеории суперструн. Объектамитеории
суперструн, к примеру, являются разнообразные струны и многомерные
мембраны, которые, однако, летают в заранее приготовленном для них пространстве и времени. Вопрос о том, как именно возникло
это многомерное пространство-время, в такойтеории не решишь.
В петлевойтеории гравитации главные объекты — маленькиеквантовые ячейки пространства, определенным
способом соединенные друг с другом. Законом их соединения и их
состоянием управляет некоторое поле, которое в них существует.
Величина этого поля является для этих ячеек неким « внутренним
временем »: переход от слабого поля к более сильному полю
выглядит совершенно так, как если бы было некое «прошлое», которое
бы влияло на некое «будущее». Закон этот устроен так, что для
достаточно большой вселенной с малой концентрациейэнергии (то есть
далеко от сингулярности) ячейки как бы «сплавляются» друг с другом,
образуя привычное нам «сплошное» пространство-время.
Авторы статьи утверждают, что всего этого уже достаточно, чтобы
решить задачу о том, что происходит со Вселенной при приближении к
сингулярности. Решения полученных ими уравнений показали, что при
экстремальном «сжатии» вселенной пространство «рассыпается»,
квантовая геометрия не позволяет уменьшить его объем до нуля,
неизбежно происходит остановка и вновь начинается расширение. Эту
последовательность состояний можно отследить как вперед, так и назад
во «времени», а значит, в этойтеории до Большого взрыва с
неизбежностью присутствует «Большой хлопок» — коллапс
«предыдущей» вселенной. При этом свойства этой предыдущей вселенной
не теряются в процессе коллапса, а однозначно передаются в нашу
Вселенную.
Описанные вычисления опираются, правда, на некоторые упрощающие
предположения о свойствах универсального поля. По-видимому, общие
выводы сохранятся и без таких предположений, но это еще нуждается в
проверке. Будет крайне интересно проследить за дальнейшим развитием
этих идей.
Описание Теории Струн простым языком
Сначала давайте определимся, как построены теории в науке. Все они — математическая модель, описывающая мир с некоторой погрешностью. Чем-то это схоже на живописца, изображающего натюрморт. Ему под силу нарисовать только главные черты: цвет, форму, объем, и не под силу изобразить более тонкие детали. И также, как один объект можно изобразить по-разному, также и для какого-то явления в физике можно выдумать разные научные теории.
Удивительно, но настоящие тела в теориях могут иметь сходство с чем угодно: шарики, стрелочки, палочки. А ведь согласитесь, что это не так значимо, если теория даст высокоточные результаты и правильные предположения. Сегодня имеют значимое место две очень глобальные высокоточные теории. Общая Теория Относительности (ОТО), объясняющая природу гравитации и Квантовая Теория Поля (КТП), которая разъясняет взаимодействие частиц (объектов) в микромире. Но есть одно затруднение: ОТО хорошо работает на макро-расстояниях (больших расстояниях), а КТП, напротив, не работает на макро-расстояниях. И 2 эти чудо-теории, применяемые на одном расстоянии, конфликтуют друг с другом.
Теория Струн и Вселенная
Но внутренний голос человека утверждает, что наша реальность не должна быть так устроена. Ведь должна быть теория, работающая одинаково хорошо на всех расстояниях (масштабах). Это и будет самое достоверное описание Вселенной, самая подробная картина нашего мира и реальности.
Самым современным из таких описаний является Теория Струн. Объяснить чайнику простым языком эту Теорию Струн можно так: в пространстве на микро-расстояниях, в 100 млрд млрд раз меньше протона, рождаются вибрации поля, стоячие волны, очень схожие на вибрации обычный струны.
Эти струны содержат в себе какую-то энергию и эквивалентную массе по известной формуле E = mc2 и соответствует частице с такой массой. Но это попросту математическая модель, отлично описывающая взаимодействие микрочастиц, поясняет почему они имеют такие массы, а также объясняет почему константы в физике имеют именно такие значения.
Колдовство
Давайте сделаем некоторые предварительные переобозначения
Тогда, наиболее удобным вариантом представления произведения P(τ) будет:
Я использовал разложение Тейлора для -log(1-x) и геометрический ряд. Если вы не уверены, вы можете более тщательно проверить, разумны ли эти шаги (включая своп суммы) для Im τ>0.
а затем, вводя еще один реальный параметр (наш завершающий ход будет заключаться в том, чтобы устремить его в бесконечность), мы строим комбинацию
Давайте посчитаем полюса g. Быстрый осмотр показывает, что существует набор простых полюсов при w=±nkv и еще один при w=±nktv, для k=1,2,3,…; плюс тройной полюс при w=0. Вычеты легко вычисляются следующим образом:
Если вычет в тройной точке (полюс третьего порядка) не кажется очевидным, вспомним, что разложение Тейлора котангенса в нуле начинается .
График g (w), для (τ = i), (ν = 1). Белые пятнышки — это полюса, и порядок таков, сколько раз цвета повторяются вокруг них.
Теорема вычетов гласит:
Сумма на самом деле пробегает по полюсам, которые находятся внутри параллелограмма, но мы скоро увидим, что это не то, о чем нам следует беспокоиться.
Теперь я хотел бы использовать это уравнение, чтобы доказать тождество, которое нам действительно нужно. Однако я докажу это только для τ на мнимой оси, потому что это проще, но на самом деле это будет верно для всех Im τ>0. Поскольку обе части уравнения, которое я выведу, голоморфны в τ над верхней полуплоскостью, их согласия на прямой достаточно, чтобы доказать, что они всегда равны. Короче говоря, предположим, что τ пока чисто мнимое, но в конце мы можем просто отбросить это предположение.
Заделаем же интеграл на параллелограмме, который теперь ромб. Для , кажется, первообразную сходу не отгадаешь. Итак, возьмем предел ν→∞. Нетрудно заметить, что f(vw) сходится к константе (1,-1,1,-1) соответственно на четырех отрезках γ (если вы ее не видите, запишите ее с помощью комплексных экспонент). Таким образом, в пределе интеграл равен
Легкотня! Интеграл от 1/w — это log w, так что позвольте мне просто приписать его и… ААА! Контур обхода! Нам нужно выбрать обход для логарифма и убедиться, что он не перепрыгивает через берег разреза. Мы можем использовать симметрию чтоб переписать
Славненько. Теперь о вычетах. Если ν→∞, то все полюса сжимаются и приближаются к началу координат; таким образом, в пределе все они находятся внутри ромба, а сумма идет по всем полюсам. Таким образом, сумма равна
на случай, если кто не помнит
и наша сумма вычетов:
Наконец-то мы возвращаемся на Землю. Это начинает выглядеть как теорема о нашем произведении P(τ). Теперь, когда у нас есть обе части равенства, давайте воспользуемся теоремой вычетов.
А вот и наше магическое число! По крайней мере, половина. Это все еще выглядит как тарабарщина, хотя… давайте для пущей наглядности перейдем к экспонентам:
Казалось бы, ничего особенного, но комбинация
как мы недавно доказали, красиво трансформируется при преобразовании τ→-1/τ:
И это все! Именно это мы и искали! Чтоб преобразовать во что надо, замечаем, что оно должно быть самим η(τ), и поэтому r=1/24, и поэтому, наконец
Теория струн и свойства частиц
Один из самых основных вопросов всей физики стоит так: почему частицы, которые наблюдаются в природе, являются именно такими, а не какими-нибудь другими? Интерес к этому вопросу непросто академический, он отражает очень важный факт. Если бы у частиц были другие свойства, ядерные процессы, питающие звёзды, подобные нашему Солнцу, были бы нарушены. Вселенная без звёзд была бы совсем другой. Очевидно, что без солнечного света и тепла не возникла бы сложная цепочка событий, приведшая к возникновению жизни на Земле. Поэтому возникает фундаментальный вопрос: как с помощью ручки, бумаги и, возможно, компьютера, а также руководствуясь нашим пониманием законов природы, вычислить свойства частиц и получить результаты, которые согласуются с экспериментальными данными.
В рамках квантовой теории поля ответа на этот вопрос нет и не может быть. В квантовой теории поля измеренные свойства частиц выступают в качестве исходных данных — на их основе строится и определяется сама теория.
Сможет ли теория струн справиться с этим лучше? Одна из самых красивых черт струнной теории состоит в том, что свойства частиц определяются размером и формой дополнительных измерений. Поскольку струны очень малы, они вибрируют не только в трёх привычных больших измерениях, но и в малых, свёрнутых измерениях. Колебания струн в струнной теории определяются формой скрученных измерений. Вспоминая, что вибрационное поведение струн определяет свойства частиц, такие как массу и электрический заряд, мы видим, что эти свойства диктуются геометрией дополнительных измерений. Поэтому если достоверно известно, как выглядят дополнительные измерения в теории струн, то можно легко предсказать любые свойства вибрирующих струн и, следовательно, все свойства элементарных частиц, порождённых колебаниями струны. Трудность, как и раньше, в том, что никто не знает, какова точная геометрическая форма дополнительных измерений. Уравнения теории струн накладывают математические ограничения на геометрию дополнительных измерений и требуют, чтобы они принадлежали частному классу так называемых пространств Калаби–Яу. Проблема в том, что нет какой-то одной, выделенной формы Калаби–Яу. Наоборот, эти пространства имеют разные размеры и контуры. Дополнительные измерения, различающиеся по размерам и по форме, порождают разные вибрации струн и, следовательно, разные наборы свойств частиц. Отсутствие однозначной спецификации для дополнительных измерений является главным камнем преткновения, который не позволяет струнным теоретикам делать конкретные предсказания.
В середине 1980-х годов, было известно небольшое количество пространств Калаби–Яу, поэтому можно было надеяться проанализировать каждое из них и соотнести с известной физикой. Спустя несколько лет, число пространств Калаби–Яу возросло до нескольких тысяч, что стало серьёзной задачей для обстоятельного изучения. Время шло и число страниц в каталоге пространств Калаби–Яу только увеличивалось. Теперь их больше чем песчинок на пляже. И речи быть не может о том, чтобы математически рассмотреть каждое на роль дополнительных измерений. Поэтому струнные теоретики продолжают поиск математической подсказки, которая позволит выделить из всех возможных пространств Калаби–Яу то самое, единственное.
Теория струн пока не реализовала свои возможности по объяснению свойств фундаментальных частиц. В этом отношении теория струн до сих пор не имеет особых преимуществ перед квантовой теорией поля.
SpaceX
Со SpaceX понятно: надо же на чем-то долететь до Красной планеты. Компания основана в 2002 году для создания технологий революционного упрощения и удешевления космических полетов с дальней целью колонизации Марса.
Цель: сделать человечество межпланетным видом.
Достижения: в 2010 году SpaceX стала первой частной компанией, сумевшей вывести на орбиту собственный космический корабль Dragon и благополучно вернуть его на Землю, а с 2012-го регулярно отправляет «грузовики» на МКС. В 2015 году первая ступень ракеты SpaceX Falcon 9 совершила мягкую посадку, а в 2017-м была запущена еще раз. Проведены 124 успешных запуска и 86 посадок, 65 раз ракеты SpaceX использовались повторно. Идет развертывание орбитальной группировки глобальной системы связи Starlink. Проходят испытания будущий громадный пилотируемый корабль Starship, который должен доставить людей на Марс, и сверхтяжелая ракета для его выведения.
В чем ценность теории струн?
Что такое теория струн простым языком? Если взглянуть на нее в целом и не вдаваться в детали, это попытка посмотреть на все, что мы знаем и видим, под другим ракурсом. До появления теории струн не было глобальных попыток пересмотреть уже устоявшиеся, общепринятые нормы. А вот авторам новой теории удалось всколыхнуть “застоявшееся болото”. Физики стали все чаще предполагать, что микрочастицы действительно могут быть в миллиарды раз меньше электронов (и пусть даже они не похожи на струны). Мы задумались над существованием других измерений, о чем, правда, еще в 1919-м году писал немец Теодор Калуца, а Альберт Эйнштейн считал его предположение заслуживающим внимания. Далее эту идею развил шведский ученый Оскар Клейн, который представил, что невидимое для нас измерение может быть свернуто в микромасштабе. По сути, именно эта идея и легла в основу теории струн. В общем, физики стали смотреть на постулаты немного иначе.
Еще одна ценность новой теории в том, что она перевела физиков от вопроса “Как устроен мир?” к не менее важному: “Почему мир устроен именно так?”. На первый вопрос физики пусть и не ответили до конца, но им удалось достичь серьезного прогресса в этом направлении
А вопрос “Почему?” может заставить многих ученых взглянуть на исследования и опыты под другим углом. Пусть даже эта работа не будет напрямую связана с теорией струн.
Кроме того, не забывайте, что в рамках теории струн действительно удалось увязать объяснения для всех явлений, процессов и объектов, наблюдаемых во вселенной. И пусть в ней еще много нестыковок, это дорогого стоит. Сейчас ученые пытаются усовершенствовать теорию, из-за чего базовая теория струн получила несколько ответвлений. И пусть популярность этой в каком-то смысле революционной теории снижается, очевидно, что ее нельзя назвать провальной.
Хотите узнать больше о нашем мире? Тогда вот подборка лучших фильмов от BBC! О природных явлениях, аномалиях, животных, разных уголках нашей замечательной планеты.
А если вам кажется, что вы знаете о нашем мире все, взгляните на эту подборку фактов. Наверняка найдется хотя бы один пункт, что удивит вас.
Время
С трехмерным пространством более ли менее разобрались, но не будем забывать и про время – четвертое измерение. Ведь нам же мало знать, «где». Для жизни в нашем мире обязательно нужно еще и «когда».
Так как время – это тоже координата, то всю временную линию можно описать как луч. Вспоминайте школьный курс математики, что такое луч? Это линия, имеющая начало, но не имеющая конца. Время движется только вперед, и никак иначе. Реально лишь настоящее, и ни будущего, ни прошлого по сути вообще не существует.
Однако теория относительности может с этим поспорить. Она говорит о том, что время – такое же измерение, как и остальные три. А значит, все, что было, есть и будет, одинаково реально. Все относительно и зависит лишь от нашего восприятия. С точки зрения времени, человечество выглядит как-то так:
Однако мы видим лишь определенную проекцию времени, небольшой его отрезок. И в каждый отдельный момент он будет различным. Чувствуете, где-то мы уже видели один и тот же объект по-разному в зависимости от его положения? То самое брокколи в МРТ.
Даже теория струн придерживается того, что временное измерение только одно. Все остальные пространственные. Но почему пространство такое гибкое, а время лишь одно? Ответа на этот вопрос сейчас нет. Вы уже и сами поняли, как трудно представить несколько лишних пространственных измерений, поэтому даже подумать сложно, как могут ощущаться несколько временных. Некоторые ученые, как, например, Ицхак Барс, американский астрофизик, считают, что главной проблемой несостыковок в теории суперструн является как раз-таки игнорирование нескольких временных измерений. Давайте устроим себе разминку для ума и попробуем представить хотя бы два времени. После нескольких страниц мозговыносящего текста устраивать разминку для ума будет сложно, понимаю, но это интересно.
Оба временных измерения должны существовать отдельно друг от друга. Таким образом, если поменять положение объекта в одной из размерностей, его координаты в другой вполне могут остаться неизменными. То есть, если одно временное измерение пересечется с другим в определенной точке, то время в ней остановится вовсе. Наглядную картину этого показывает нам Нео из матрицы:
По сути наш избранный просто поставил временную ось своей ладони перпендикулярно такой же оси летящих пуль. И все, время остановилось. На деле же все не так просто.
Как вообще будет идти время в такой Вселенной? Исходя из логики, хотя, говоря о Теории Всего логику вообще лучше не упоминать, одно событие должно происходить два раза… одновременно… в разных точках пространства и времени… не пересекаясь… Да, это сложно. Вы все еще можете пойти поиграть в Dark Souls на банане. Если по-простому, то вы будете жить одновременно в двух отрезках времени (на этом строится вся суть фильма «Господин Никто», о котором я упоминал в начале).
Как вообще 2D-пространство отличается от одномерного? Вы уже знаете, мы говорили об этом чуть выше: возможностью обходить препятствия. В двумерном пространстве можно двигаться как вверх-вниз, так и вперед-назад, даже по диагонали. Представьте себе любую игру-платформер, как, например, Mario, и вспомните, в каких направлениях вы могли там двигаться. В одномерном же пространстве мы можем двигаться только вперед или назад.
Со временем все то же самое. Отличие одномерного времени от одномерного пространства лишь в том, что это луч, а не отрезок. И движется он только вперед, а значит назад во времени мы идти не можем. А что с двумерным временем? Не знаю, может вы можете представить, каково это, пересекать время по диагонали?
История озарения
В 1960-е годы молодой итальянец Габриеле Венециано, работающий физиком-теоретиком в ЦЕРН в Женеве, искал способ объяснить сильное ядерное взаимодействие андронов (тогда об андронах знали гораздо меньше, ведь Большой адронный коллайдер еще не изобрели). В какой-то момент случилось озарение: ученый вдруг понял, что для объяснения наблюдаемых процессов подходит так называемая бета-функция — математическая формула, придуманная еще в 1730 году Леонардом Эйлером, швейцарским математиком, который полжизни прожил в России. Вскоре обнаружилось, что эта формула позволяет описать огромное количество данных, накопленных при изучении особенностей сильного взаимодействия. «Бинго!» — подумал Венециано и поделился открытием с миром ученых.
Это был лишь первый кусочек пазла, который еще предстояло сложить другим. Физики Йохиро Намбу, Холгер Нильсен и Леонард Сасскинд размышляли: почему старинная формула так легко подошла и какой физический смысл таится в этой сложной математике? К 1970 году им стало ясно, что сильное взаимодействие элементарных частиц превосходно описывается с помощью бета-функции Эйлера, если представлять их в виде крошечных колеблющихся одномерных струн. Эти невидимые человеческому глазу нити ученые воображали как замкнутые — в виде колец — и как открытые. Было решено, что длина струн настолько мала, что их с натяжкой можно рассматривать как точки, а значит, для фундаментальной физики ничего не изменилось.
Так возникло понятие «квантовая струна» — под ним подразумевается бесконечно тонкие одномерные объекты длиной в 10–35 м, колебания которых воспроизводят все многообразие элементарных частиц. Это была настоящая революция в мире физики, так как все ранее открытые «ингредиенты Вселенной» (электроны, протоны, нейтроны и пр.) теперь предлагалось свести к единой материи: к струнам, поведение которых легко описывается формулой E = mc2, где Е — энергия, m — масса, с — скорость света в вакууме.
Струны более массивных частиц совершают более интенсивные колебания, а струны более легких частиц колеблются менее интенсивно. В конечном итоге колебания на определенной частоте определяют свойства струн: массу и электрический заряд, что позволяет отнести их к определенной разновидности фундаментальных частиц, будь то кварк, фотон, глюон и др.
Уровни строения мира. 1. Макроскопический — вещество. 2. Молекулярный. 3. Атомный — протоны, нейтроны и электроны. 4. Субатомный — электрон. 5. Субатомный — кварки. 6. Струнный
Квантовые поля
Начнем с рассмотрения традиционной квантовой теории поля.
В классической физике поля описываются как нечто типа тумана, который пронизывает область пространства и может переносить возмущения в виде ряби и колебаний. В квантовой механике понятия поля приводит к квантовой теории поля. Квантовая неопределенность заставляет значение поля в каждой точке случайно колебаться. Подобно воде, состоящей из молекул H2O, квантово-механическое поле состоит из бесконечно малых частиц – кванты поля. Но как бы не представлять частицы в рамках квантовой теории поля они математически описываются как крохотные точки, не имеющие пространственного размера и внутренней структуры.
Вера физиков в квантовую теорию поля обусловлена одним существенным фактором: ни один эксперимент не противоречит её предсказаниям. Наоборот, данные подтверждают, что уравнения квантовой теории поля описывают поведение частиц с изумительной точностью. После такого успеха можно ожидать, что квантовая теория поля является математическим фундаментом для понимания всех сил в природе. В результате упорного труда многих из физиков к концу 1970-х было установлено, что слабое и сильное ядерные взаимодействия действительно прекрасно описываются квантовой теорией поля.
Однако многие из физиков быстро пришли к выводу, что ситуация с четвёртым взаимодействием в природе — гравитацией, гораздо тоньше. Как только уравнения общей теории относительности объединяются с уравнениями квантовой теории, математика начинает бунтовать. Совместное использование уравнений для вычисления квантовой вероятности некоторых физических процессов — таких как вероятность того, что два электрона оттолкнутся друг от друга — как правило, приводит к ответу бесконечность. Но вероятности бесконечными быть не могут. По определению значение вероятности должно находиться между 0 и 1 (между 0 и 100, если считать в процентах). Бесконечная вероятность шлёт очевидный математический намёк: совместное использование уравнений бессмысленно.
Физики выяснили, что проблема кроется в дрожании и флуктуациях из-за квантовой неопределённости. Математические методы квантовой теории поля были разработаны для анализа флуктуаций сильных, слабых и электромагнитных полей, но, при их применении к гравитационному полю — полю, которое определяет кривизну пространства-времени, — оказалось, что они бесполезны. Целое поколение физиков боролось с квантовыми флуктуациями, и к началу 1970-х годов были развиты математические методы, адекватно описывающие квантовые свойства негравитационных полей. Однако флуктуации гравитационного поля качественно другие. Они больше похожи на землетрясение. Поскольку гравитационное поле вплетено в саму ткань пространства-времени, квантовые флуктуации сотрясают всю его структуру вдоль и поперёк. Математические методы, используемые для анализа таких всеобъемлющих квантовых флуктуаций, перестают работать.
В течение многих лет физики смотрели сквозь пальцы на эту проблему, потому что она возникает только при весьма экстремальных условиях. Гравитация вступает в игру, когда объекты очень массивны, а квантовая механика — когда их размер очень мал. Редко бывает, чтобы предмет был одновременно и массивный, и малым. Однако подобные ситуации возникают. Когда гравитация и квантовая механика применяются для описания или Большого взрыва, или чёрных дыр, то есть когда действительно огромная масса вещества сжимается до небольших размеров, математические методы перестают работать.
Насколько массивным и малым должна быть физическая система, для того чтобы и гравитация, и квантовая механика играли существенную роль. Ответ такой — масса, примерно в 109 раз превышающая массу протона, так называемая масса Планка, сжатая до фантастически малого объёма примерно 10-99 кубического сантиметра (грубо говоря, это сфера с радиусом 10-33 сантиметра с так называемой планковской длиной). Таким образом, расстояние, на котором квантовая гравитация вступает в права, в миллион миллиардов раз меньшее расстояния, достижимого на самых мощных в мире ускорителях. Такая огромная неисследованная территория легко может быть населена новыми полями и их частицами — и кто знает, чем ещё.
Однако в середине 1980-х годов в физическом сообществе поползли слухи, что в направлении объединения произошёл серьёзный теоретический прорыв в рамках подхода, названного теорией струн.