Содержание
- Способы обработки питательной и котловой воды
- Определение
- Сводные таблицы теплоемкостей
- Теплоемкости удельные твердых веществ, жидкостей и газов (газов — при постоянном давлении 1 бар абс) + справочные плотности. Вариант для печати.
- Удельная теплоёмкость
- Виды теплопередачи
- Другие условия
- «Количество теплоты. Удельная теплоёмкость»
- Таинственный резервуар
- Теплоемкость материалов — таблица
- Примеры для тех или иных веществ
Способы обработки питательной и котловой воды
Коррекционную обработку котловой воды начинают сразу же после забора из источника водоснабжения. Все потоки воды собирают в специальные баки: конденсата, деаэрационной воды, химочищенной воды, подпиточной воды и другие по схеме докотловой очистки воды.
Далее она поступает в системы водоочистки, которые могут состоять из одного или всех узлов:
- Механическая очистка — удаляет крупные нерастворимые взвешенные вещества.
- Система умягчения воды. С применением известкового смягчения воды или использованием натрий катионитовых ионообменных фильтров с регенерацией их хлористым натрием или поваренной солью.
- Для паровых котлов, имеющих барабаны и вырабатывающих пар с давлением до 10 атм, широкое используют метод фосфатирования котловой воды. Для поддержания рН=9,1 вводят фосфаты в барабан котлоагрегата.
Докотловая обработка воды в домашних условиях
Сложные ионообменные фильтровые установки довольно дорогостоящие, их установка может быть экономически нецелесообразной для котлов малой мощности, например, в жилых домах. В таких вариантах применяют более простые и дешевые средства химических и физических методов докотловой обработки воды: ультразвук, электростатика и магнитная котловая обработка.
Для того чтобы обеспечить нормативный срок эксплуатации котлов собственник должен выполнять все требования к качеству питательной и котловой воды. Для этого применяются специальные водоочистные системы, и контролируется состав воды, через выполнение анализов котловой воды и питательной воды.
Сегодня многие компании наладили выпуск компактных фильтров для очистки питательной воды, которые легко устанавливаются и эксплуатируются. К ним можно отнести марки MIGNON, Тайфун, Наша Вода и Гейзер. Фильтры отлично очищают воду перед подачей в котел, тем самым снижают процесс накипеобразования и коррозионного повреждения труб и теплообменников, что увеличивает их срок службы.
Определение
Количество теплоты входит в математическую формулировку первого начала термодинамики, которую можно записать как Q=ΔU+A{\displaystyle Q=\Delta U+A}. Здесь Q{\displaystyle Q} — количество теплоты, переданное системе, ΔU{\displaystyle \Delta U} — изменение внутренней энергии системы и A{\displaystyle A} — работа, совершённая системой. Однако корректное определение теплоты должно указывать способ её измерения безотносительно к первому началу. Так как теплота — это энергия, переданная в ходе теплообмена, для измерения количества теплоты необходимо пробное калориметрическое тело. По изменению внутренней энергии пробного тела можно будет судить о количестве теплоты, переданном от системы пробному телу. Без использования пробного тела первое начало теряет смысл содержательного физического закона и превращается в тавтологическое определение количества теплоты.
Пусть в системе, состоящей из двух тел X{\displaystyle X} и Y{\displaystyle Y}, тело Y{\displaystyle Y} (пробное) заключено в жёсткую адиабатическую оболочку. Тогда оно не способно совершать макроскопическую работу, но может обмениваться энергией (то есть теплотой) с телом X{\displaystyle X}. Предположим, что тело X{\displaystyle X} также почти полностью заключено в адиабатическую, но не жёсткую оболочку, так что оно может совершать механическую работу, но обмениваться теплотой может лишь с Y{\displaystyle Y}. Количеством теплоты, переданным телу X{\displaystyle X} в некотором процессе, называется величина QX=−ΔUY{\displaystyle Q_{X}=-\Delta U_{Y}}, где ΔUY{\displaystyle \Delta U_{Y}} — изменение внутренней энергии тела Y{\displaystyle Y}. Согласно закону сохранения энергии, полная работа, выполненная системой, равна убыли полной внутренней энергии системы двух тел: A=−ΔUx−ΔUy{\displaystyle A=-\Delta U_{x}-\Delta U_{y}}, где A{\displaystyle A} — макроскопическая работа, совершенная телом X{\displaystyle X}, что позволяет записать это соотношение в форме первого начала термодинамики:Q=A+ΔUx{\displaystyle Q=A+\Delta U_{x}}.
Виды энергии: | ||
---|---|---|
Механическая | Потенциальная Кинетическая | |
‹› | Внутренняя | |
Электромагнитная | Электрическая Магнитная | |
Химическая | ||
Ядерная | ||
G{\displaystyle G} | Гравитационная | |
∅{\displaystyle \emptyset } | Вакуума | |
Гипотетические: | ||
Тёмная | ||
См.также:Закон сохранения энергии |
Таким образом, вводимое в феноменологической термодинамике количество теплоты может быть измерено посредством калориметрического тела (об изменении внутренней энергии которого можно судить по показанию соответствующего макроскопического прибора). Из первого начала термодинамики следует корректность введённого определения количества теплоты, то есть независимость соответствующей величины от выбора пробного тела Y{\displaystyle Y} и способа теплообмена между телами. При таком определении количества теплоты первое начало становится содержательным законом, допускающим экспериментальную проверку, так как все три величины, входящие в выражение для первого начала, могут быть измерены независимо.
Сводные таблицы теплоемкостей
Вещество | Агрегатное состояние | Удельная теплоемкость, Дж/(кг·К) |
---|---|---|
Золото | твердое | 129 |
Свинец | твердое | 130 |
Иридий | твердое | 134 |
Вольфрам | твердое | 134 |
Платина | твердое | 134 |
Ртуть | жидкое | 139 |
Олово | твердое | 218 |
Серебро | твердое | 234 |
Цинк | твердое | 380 |
Латунь | твердое | 380 |
Медь | твердое | 385 |
Константан | твердое | 410 |
Железо | твердое | 444 |
Сталь | твердое | 460 |
Высоколегированная сталь | твердое | 480 |
Чугун | твердое | 500 |
Никель | твердое | 500 |
Алмаз | твердое | 502 |
Флинт (стекло) | твердое | 503 |
Кронглас (стекло) | твердое | 670 |
Кварцевое стекло | твердое | 703 |
Сера ромбическая | твердое | 710 |
Кварц | твердое | 750 |
Гранит | твердое | 770 |
Фарфор | твердое | 800 |
Цемент | твердое | 800 |
Кальцит | твердое | 800 |
Базальт | твердое | 820 |
Песок | твердое | 835 |
Графит | твердое | 840 |
Кирпич | твердое | 840 |
Оконное стекло | твердое | 840 |
Асбест | твердое | 840 |
Кокс (0…100°С) | твердое | 840 |
Известь | твердое | 840 |
Волокно минеральное | твердое | 840 |
Земля (сухая) | твердое | 840 |
Мрамор | твердое | 840 |
Соль поваренная | твердое | 880 |
Слюда | твердое | 880 |
Нефть | жидкое | 880 |
Глина | твердое | 900 |
Соль каменная | твердое | 920 |
Асфальт | твердое | 920 |
Кислород | газообразное | 920 |
Алюминий | твердое | 930 |
Трихлорэтилен | жидкое | 930 |
Абсоцемент | твердое | 960 |
Силикатный кирпич | твердое | 1000 |
Полихлорвинил | твердое | 1000 |
Хлороформ | жидкое | 1000 |
Воздух (сухой) | газообразное | 1005 |
Азот | газообразное | 1042 |
Гипс | твердое | 1090 |
Бетон | твердое | 1130 |
Сахар-песок | 1250 | |
Хлопок | твердое | 1300 |
Каменный уголь | твердое | 1300 |
Бумага (сухая) | твердое | 1340 |
Серная кислота (100%) | жидкое | 1340 |
Сухой лед (твердый CO2) | твердое | 1380 |
Полистирол | твердое | 1380 |
Полиуретан | твердое | 1380 |
Резина (твердая) | твердое | 1420 |
Бензол | жидкое | 1420 |
Текстолит | твердое | 1470 |
Солидол | твердое | 1470 |
Целлюлоза | твердое | 1500 |
Кожа | твердое | 1510 |
Бакелит | твердое | 1590 |
Шерсть | твердое | 1700 |
Машинное масло | жидкое | 1670 |
Пробка | твердое | 1680 |
Толуол | твердое | 1720 |
Винилпласт | твердое | 1760 |
Скипидар | жидкое | 1800 |
Бериллий | твердое | 1824 |
Керосин бытовой | жидкое | 1880 |
Пластмасса | твердое | 1900 |
Соляная кислота (17%) | жидкое | 1930 |
Земля (влажная) | твердое | 2000 |
Вода (пар при 100°C) | газообразное | 2020 |
Бензин | жидкое | 2050 |
Вода (лед при 0°C) | твердое | 2060 |
Сгущенное молоко | 2061 | |
Деготь каменноугольный | жидкое | 2090 |
Ацетон | жидкое | 2160 |
Сало | 2175 | |
Парафин | жидкое | 2200 |
Древесноволокнистая плита | твердое | 2300 |
Этиленгликоль | жидкое | 2300 |
Этанол (спирт) | жидкое | 2390 |
Дерево (дуб) | твердое | 2400 |
Глицерин | жидкое | 2430 |
Метиловый спирт | жидкое | 2470 |
Говядина жирная | 2510 | |
Патока | 2650 | |
Масло сливочное | 2680 | |
Дерево (пихта) | твердое | 2700 |
Свинина, баранина | 2845 | |
Печень | 3010 | |
Азотная кислота (100%) | жидкое | 3100 |
Яичный белок (куриный) | 3140 | |
Сыр | 3140 | |
Говядина постная | 3220 | |
Мясо птицы | 3300 | |
Картофель | 3430 | |
Тело человека | 3470 | |
Сметана | 3550 | |
Литий | твердое | 3582 |
Яблоки | 3600 | |
Колбаса | 3600 | |
Рыба постная | 3600 | |
Апельсины, лимоны | 3670 | |
Сусло пивное | жидкое | 3927 |
Вода морская (6% соли) | жидкое | 3780 |
Грибы | 3900 | |
Вода морская (3% соли) | жидкое | 3930 |
Вода морская (0,5% соли) | жидкое | 4100 |
Вода | жидкое | 4183 |
Нашатырный спирт | жидкое | 4730 |
Столярный клей | жидкое | 4190 |
Гелий | газообразное | 5190 |
Водород | газообразное | 14300 |
Название материала | Название материала | C, ккал/кг*С |
ABS | АБС, сополимер акрилонитрила, бутадиена и стирола | 0,34 |
POM | Полиоксиметилен | 0,35 |
PMMA | Полиметилметакрилат | 0,35 |
Ionomer | Иономеры | 0,55 |
PA6/6.6/6.10 | Полиамид 6/6.6/6.10 | 0,4 |
PA 11 | Полиамид 11 | 0,58 |
PA 12 | Полиамид 12 | 0,28 |
PC | Поликарбонат | 0,28 |
PU | Полиуретан | 0,45 |
PBT | Полибутилентерефталат | 0,3–0,5 |
PE | Полиэтилен | 0,55 |
PET | Полиэтилентерефталат | 0,3–0,5 |
PPO | Полифениленоксид | 0,4 |
PI | Карбоксиметилцеллюлоза, полианионовая целлюлоза | 0,27 |
PP | Полипропилен | 0,46 |
PS (GP) | Полистирол | 0,28 |
PSU | Полисульфон | 0,31 |
PCV | Полихлорвинил | 0,2 |
SAN (AS) | Смолы, сополимеры на основе стирола и акрилонитрита | 0,32 |
Теплоемкости удельные твердых веществ, жидкостей и газов (газов — при постоянном давлении 1 бар абс) + справочные плотности. Вариант для печати.
Твердые вещества. Удельная теплоемкость при 20 °C (если не указано другое).
Вещество | Плотность, 10 3 кг/м 3 | Удельная теплоемкость, кДж / (кг · К), при 20 oС |
Асбест | 2,4 | 0,8 |
Асбоцемент | 1,8 | 0,96 |
Асфальт | 1,4 | 0,92 |
Алюминий | 2,7 | 0,92 |
Базальт | 3,0 | 0,84 |
Бакелит | 1,26-1,28 | 1,59 |
Бетон | практическая 1,8-2,2 (до 2,7) | 1,00 |
Бумага сухая | — | 1,34 |
Вольфрам | 19,3 | 0,15 |
Гипс | 2,3 | 1,09 |
Глина | 2,3-2,4 | 0,88 |
Гранит | 2,7 | 0,75 |
Графит | 2,3 | 0,84 |
Грунт песчаный | 1,5-2,0 | 1,10-3,32 |
Дерево (дуб) | 0,7 | 2,40 |
Дерево (пихта) | 0,5 | 2,70 |
Дерево (сосна) |
0 ,5 | 2,70 |
ДСП | 0,7 | 2,30 |
Железо | 7,8 | 0,46 |
Земля влажная | 1,9-2,0 | 2,0 |
Земля сухая | 1,4-1,6 | 0,84 |
Земля утрамбованная | 1,6-2 | 1,0-3,0 |
Зола | 0,75 | 0,80 |
Золото | 19,3 | 0,13 |
Известь | 0,4-0,7 | 0,84 |
Кальцит (известковый шпат) | 2,75 | 0,80 |
Камень | 1,8-3 | 0,84-1,26 |
Каолин (белая глина) | 2,6 | 0,88 |
Картон сухой | — | 1,34 |
Кварц | 0,75 | |
Кирпич | 1,8 | 0,85 |
Кирпичная кладка | 1,8-2,2 | 0,84-1,26 |
Кожа | 2,65 | 1,51 |
Кокс (0-100°С) | истинная 1,80-1,95 (кажущаяся 1,0) | 0,84 |
Кокс (100-1000°С) | = | 1,13 |
Лед (0°С) | 0,92 | 2,11 |
Лед (-10°С) | = | 2,22 |
Лед (-20°С) | = | 2,01 |
Лед (-60°С) | = | 1,64 |
Лед сухой (СО2 твердый) | 1,97 | 1,38 |
Латунь | 8,5 | 0,38 |
Медь | 8,9 | 0,38 |
Мрамор | 2,7 | 0,92 |
Никель | 8,9 | 0,5 |
Олово | 7,3 | 0,25 |
Парафин | 0,9 | 2,89 |
Песчаник глиноизвестняковый | 2,2-2,7 | 0,96 |
Песчаник керамический | = | 0,75-0,84 |
Песчаник красный | = | 0,71 |
Полиэтилен | 0,90-0,97 | 2,0-2,3 |
Полистирол | 1,05 | 1,38 |
Полиуретан | 1,1-1,2 | 1,38 |
Полихлорвинил/Поливинилхлорид | 0,7-0,8 | 1,00 |
Пробка крошка | <0,2 | 1,38 |
Пробка куском | 0,24 | 2,05 |
Резина твердая | 0,9-1,3 | 1,42 |
Свинец | 1,4 | 0,13 |
Сера ромбическая | 2,07 | 0,71 |
Серебро | 10,5 | 0,25 |
Соль каменная | 2,3 | 0,92 |
Соль поваренная | 2,2 | 0,88 |
Сталь | 7,8 | 0,46 |
Стекло оконное | 2,5 | 0,67 |
Стекловолокно | — | 0,81 |
Тело человека | 1,05 | 3,47 |
Уголь бурый (0-100 °С) | 1-1,8 |
20% воды 2,09 60% воды 3,14 в брикетах 1,51 |
Уголь каменный (0-100 °С) | 1,3-1,6 | 1,17-1,26 |
Фарфор | 2,3 | 0,8 |
Хлопок | — | 1,3 |
Целлюлоза | — | 1,55 |
Цемент | 3,1 (Насыпная =1,2) | 0,8 |
Цинк | 7,1 | 0,4 |
Чугун | 7,4 | 0,54 |
Шерсть | — | 1,8 |
Шифер | 1,6-1,8 | 0,75 |
Щебень | Насыпная 1,2-1,8 | 0,75-1,00 |
Жидкости. Удельная теплоемкость при 20 °C (если не указано другое).
Вещество | Плотность, 10 3 кг / м 3 | Удельная теплоемкость при 20 oС, кДж / (кг · К) |
Ацетон | 0,79 | 2,160 |
Бензин | 0,70 | 2,05 |
Бензол (10 °C) | 0,90 | 1,42 |
Бензол (40 °C) | 0,88 | 1,77 |
Вода | 1 ,00 | 4,18-4,22 |
Вино | 0,97 | 3,89 |
Глицерин | 1,26 | 2,66 |
Гудрон | 0,99 | 2,09 |
Деготь каменноугольный | 0,92-0,96 | 2,09 |
Керосин | 0,8-0,9 | 1,88-2,14 |
Кислота азотная концентрированая |
1,52 | 3,10 |
Кислота серная концентрированая | 1,83 | 1,34 |
Кислота соляная 17% | 1,07 | 1,93 |
Клей столярный | 1-1,5 | 4,19 |
Масло моторное | 0,90 | 1,67-2,01 |
Масло оливкковое | 0,89 | 1,84 |
Масло подсолнечное | 0,89 | 1,84 |
Морская вода 18°С , 0,5% раствор соли |
1,01 | 4,10 |
Морская вода 18°С , 3% раствор соли | 1,03 | 3,93 |
Морская вода 18°С , 6% раствор соли | 1,05 | 3,78 |
Молоко | 1,02 | 3,93 |
Нефть | 0,80 | 1,67-2,09 |
Пиво | 1,01 | 3,85 |
Ртуть | 13,60 | 0,13 |
Скипидар | 0,86 | 1,80 |
Спирт метиловый (метанол) | 0,79 | 2,47 |
Сприрт нашатырный | <1 | 4,73 |
Спирт этиловый (этанол) | 0,79 | 2,39 |
Толуол | 1,72 | |
Хлороформ | 1,00 | |
Этиленгликоль | 2,30 |
Газы. Удельная теплоемкость при постоянном давлении 1 бар абс,
при 20 °C (если не указано другое).
Вещество | Химическая формула | Плотность при нормальных условиях кг/м 3 = масса 1л в граммах |
Удельная теплоемкость при постоянном давлении, КДж/(кг*K) |
Азот | N2 | 1,25 | 1,05 |
Аммиак | NH3 | 1,25 | 2,24 |
Аргон | Ar | 1,78 | 0,52 |
Ацетилен | C2H2 | 1,17 | 1,68 |
Ацетон | C3H6O | 2,58 | — |
Водород | H2 | 0,09 | 14,26 |
Водяной пар | H2O | 0,59 (при 100 °С) | 2,14 (при 100 °С) |
Воздух | — | 1,29 | 1 |
Гелий | He | 0,18 | 5,29 |
Кислород | O2 | 1,43 | 0,91 |
Неон | Ne | 0,90 | 1,03 |
Озон | O3 | 2,14 | — |
Пропан | C3H8 | 1,98 | 1,86 |
Сероводород | H2S | 1,54 | 1,02 |
Спирт этиловый | C2H6O | 2,05 | — |
Углекислый газ | CO2 | 1,98 | ≈1 |
Хлор | Cl2 | 3,16 | 0,52 |
Удельная теплоёмкость
удельная теплоёмкость, удельная теплоёмкость 8 классУде́льная теплоёмкость — отношение теплоёмкости к массе, теплоёмкость единичной массы вещества (разная для различных веществ); физическая величина, численно равная количеству теплоты, которое необходимо передать единичной массе данного вещества для того, чтобы его температура изменилась на единицу.
В Международной системе единиц (СИ) удельная теплоёмкость измеряется в джоулях на килограмм на кельвин, Дж/(кг·К). Иногда используются и внесистемные единицы: калория/(кг·К) и т.д.
Удельная теплоёмкость обычно обозначается буквами c или С, часто с индексами.
На значение удельной теплоёмкости влияет температура вещества и другие термодинамические параметры. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C.
Кроме того, удельная теплоёмкость зависит от того, каким образом позволено изменяться термодинамическим параметрам вещества (давлению, объёму и т. д.
); например, удельная теплоёмкость при постоянном давлении (CP) и при постоянном объёме (CV), вообще говоря, различны.
Формула расчёта удельной теплоёмкости: где c — удельная теплоёмкость, Q — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении), m — масса нагреваемого (охлаждающегося) вещества, ΔT — разность конечной и начальной температур вещества. Удельная теплоёмкость может зависеть (и в принципе, строго говоря, всегда — более или менее сильно — зависит) от температуры, поэтому более корректной является следующая формула с малыми (формально бесконечно малыми) и :
- 1 Значения удельной теплоёмкости некоторых веществ
- 2 См. также
- 3 Примечания
- 4 Литература
- 5 Ссылки
Значения удельной теплоёмкости некоторых веществ
воздух (сухой) | газ | 1,005 |
воздух (100 % влажность) | газ | 1,0301 |
алюминий | твёрдое тело | 0,903 |
бериллий | твёрдое тело | 1,8245 |
латунь | твёрдое тело | 0,377 |
олово | твёрдое тело | 0,218 |
медь | твёрдое тело | 0,385 |
молибден | твёрдое тело | 0,250 |
сталь | твёрдое тело | 0,462 |
алмаз | твёрдое тело | 0,502 |
этанол | жидкость | 2,460 |
золото | твёрдое тело | 0,129 |
графит | твёрдое тело | 0,720 |
гелий | газ | 5,190 |
водород | газ | 14,300 |
железо | твёрдое тело | 0,444 |
свинец | твёрдое тело | 0,130 |
чугун | твёрдое тело | 0,540 |
вольфрам | твёрдое тело | 0,134 |
литий | твёрдое тело | 3,582 |
ртуть | жидкость | 0,139 |
азот | газ | 1,042 |
нефтяные масла | жидкость | 1,67 — 2,01 |
кислород | газ | 0,920 |
кварцевое стекло | твёрдое тело | 0,703 |
вода 373 К (100 °C) | газ | 2,020 |
вода | жидкость | 4,187 |
лёд | твёрдое тело | 2,060 |
сусло пивное | жидкость | 3,927 |
асфальт | 0,92 |
полнотелый кирпич | 0,84 |
силикатный кирпич | 1,00 |
бетон | 0,88 |
кронглас (стекло) | 0,67 |
флинт (стекло) | 0,503 |
оконное стекло | 0,84 |
гранит | 0,790 |
талькохлорит | 0,98 |
гипс | 1,09 |
мрамор, слюда | 0,880 |
песок | 0,835 |
сталь | 0,47 |
почва | 0,80 |
древесина | 1,7 |
См. также
- Теплоёмкость
- Объёмная теплоёмкость
- Молярная теплоёмкость
- Скрытая теплота
- Теплоёмкость идеального газа
- Удельная теплота парообразования и конденсации
- Удельная теплота плавления
Примечания
-
↑ Для неоднородного (по химическому составу) образца удельная теплоемкость является дифференциальной характеристикой , меняющейся от точки к точке.
Зависит она в принципе и от температуры (хотя во многих случаях изменяется достаточно слабо при достаточно больших изменениях температуры), при этом строго говоря определяется — вслед за теплоёмкостью — как дифференциальная величина и по температурной оси, т.е.
строго говоря следует рассматривать изменение температуры в определении удельной теплоёмкости не на один градус (тем более не на какую-то более крупную единицу температуры), а на малое с соответствующим количеством переданной теплоты . (См. далее основной текст).
- ↑ Кельвины (К) здесь можно заменять на градусы Цельсия (°C), поскольку эти температурные шкалы (абсолютная и шкала Цельсия) отличаются друг от друга лишь начальной точкой, но не величиной единицы измерения.
Ссылки
- Таблицы физических величин. Справочник, под ред. И. К. Кикоина, М., 1976.
- Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика.
- E. М. Лифшиц Теплоёмкость // под. ред. А. М. Прохорова Физическая энциклопедия. — М.: «Советская энциклопедия», 1998. — Т. 2.
Виды теплопередачи
Здесь все совсем несложно, их всего три: теплопроводность, конвекция и излучение.
Теплопроводность
Тот вид теплопередачи, который можно охарактеризовать, как способность тел проводить энергию от более нагретого тела к менее нагретому.
Речь о том, чтобы передать тепло с помощью соприкосновения. Признавайтесь, грелись же когда-нибудь возле батареи. Если вы сидели к ней вплотную, то согрелись вы благодаря теплопроводности. Обниматься с котиком, у которого горячее пузо, тоже эффективно.
Порой мы немного перебарщиваем с возможностями этого эффекта, когда на пляже ложимся на горячий песок. Эффект есть, только не очень приятный. Ну а ледяная грелка на лбу дает обратный эффект — ваш лоб отдает тепло грелке.
Конвекция
Когда мы говорили о теплопроводности, мы приводили в пример батарею. Теплопроводность — это когда мы получаем тепло, прикоснувшись к батарее. Но все вещи в комнате к батарее не прикасаются, а комната греется. Здесь вступает конвекция.
Дело в том, что холодный воздух тяжелее горячего (холодный просто плотнее). Когда батарея нагревает некий объем воздуха, он тут же поднимается наверх, проходит вдоль потолка, успевает остыть и спуститься обратно вниз — к батарее, где снова нагревается. Таким образом, вся комната равномерно прогревается, потому что все более горячие потоки сменяют все менее холодные.
Излучение
Пляж мы уже упоминали, но речь шла только о горячем песочке. А вот тепло от солнышка — это излучение. В этом случае тепло передается через волны.
Если мы греемся у камина, то получаем тепло конвекцией или излучением?
Обоими способами. То тепло, которое мы ощущаем непосредственно от камина (когда лицу горячо, если вы расположились слишком близко к камину) — это излучение. А вот прогревание комнаты в целом — это конвекция.
Другие условия
Согласно 2 задаче, даётся энергия внесистемной единицы. Следует выявить температуру, при которой вода в количестве 5 л остынет, если её первоначально возьмут при температуре кипения. При этом она выделяет 1684 кДж тепла. Это количество переводится в джоули = 1680000 Дж.
Чтобы найти ответ, надо воспользоваться формулой, в которой используется масса. С другой стороны, в задаче она не приводится. Но несмотря на это, указан объем жидкости, соответственно, для нахождения критерия допустимо подставить уравнение с коэффициентами:
Плотность ее составляет 1000 кг на м3. Но надо подставлять объём в кубических метрах. Для перевода исходного значения надо поделить его на 1000. Получается число, равное 0,005 м3.
Производятся дальнейшие расчеты, и на выходе получается выражение:
В дальнейшем применяется формула:
Получается отметка, равная 20 ºС.
Другая задача: имеется стакан, в который налито 50 г воды. Сам он имеет массу 100 г. Температура жидкости первоначально имеет показатели 0°. Необходимо найти объем тепла, необходимого для доведения воды до кипения.
Для решения этой задачи надо ввести подходящие параметры. Можно дать условное обозначение характеристикам, которые касаются стакана, в виде единицы. Всё, что касается воды, обозначается индексом 2. Далее следует найти цифры, соответствующие теплоемкости, через таблицу. Если это тара, выполненная из лабораторного стекла, то у нее будут показатели с1 = 840 Дж/ (кг * ºС). Точный показатель для воды будет иметь вид:
Масса в этой задаче приводится в граммах. После перевода получаются показатели:
Начальная температура равна 0°. Необходимо найти параметры, соответствующие температуре кипения — 100°. Стакан нагревается одновременно с жидкостью, которая наполнена им. Поэтому начальное количество теплоты необходимо получить при складывании несколько показателей. Это параметр, получаемый при нагревании стекла, а второй показатель обнаруживается после нагрева воды. Составляется формула такого вида:
Сюда подставляются имеющееся значения, после чего она принимает следующий облик:
«Количество теплоты. Удельная теплоёмкость»
Количество теплоты
Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.
Количество теплоты – это изменение внутренней энергии тела в процессе теплопередачи без совершения работы. Количество теплоты обозначают буквой Q.
Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах — джоулях (Дж), как и всякий вид энергии.
В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии — калория (кал), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты — соотношение между калорией и джоулем: 1 кал = 4,2 Дж.
При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.
Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.
Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.
Удельная теплоёмкость
Удельная теплоёмкость – это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.
Удельная теплоёмкость обозначается буквой с. Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.
Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.
Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.
Количество теплоты Q, необходимое для нагревания тела массой m от температуры t1°С до температуры t2°С, равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.
Q = c ∙ m (t2 — t1)
По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.
Это конспект по теме «Количество теплоты. Удельная теплоёмкость». Выберите дальнейшие действия:
- Перейти к следующему конспекту: «Уравнение теплового баланса»
- Вернуться к списку конспектов по Физике
- Посмотреть решение типовых задач на количество теплоты
Таинственный резервуар
Вот и пришло время вернуться к вопросу о том, какой же таинственный резервуар запасания энергии при повышении температуры воды работает в дополнение ко всем возможным колебательным степеням свободы молекул воды.
По-видимому, дополнительные затраты энергии на повышение температуры воды связаны с продолжающимся разрушением той самой ажурной решетки льда, т.е. энергия расходуется на разрыв связей между молекулами. Совпадение теплоемкости воды с величиной, которая фигурирует в законе Дюлонга и Пти, таким образом, следует признать случайным.
Давайте грубо оценим соотношение между количеством молекулярных связей, которые рвутся при плавлении льда, и количеством связей, которые рвутся при повышении температуры воды от 0°С до 100°С и при испарении воды.
Разрыв большей части связей происходит при испарении воды. Удельная теплота испарения воды при атмосферном давлении равна 2,3 МДж/кг, причем из этой величины примерно 0,17 МДж/кг приходится на работу, которую расширяющийся водяной пар совершает против сил атмосферного давления (на разрыв связей остается 2,13 МДж/кг). Удельная теплота плавления льда равна 0,34 МДж/кг. Количество теплоты, которое нужно, чтобы нагреть 1 кг воды на 100°С, равно 0,42 МДж/кг, причем из этого количества только около одной четверти приходится на недостающую часть теплоемкости (примерно 0,107 МДж/кг). По нашим оценкам получается, что на разрыв всех связей тратится приблизительно 2,56 МДж/кг.
Итак, по мере нагрева сначала 13% связей рвутся при таянии льда, затем 4% связей рвутся в процессе нагрева воды от 0°С до 100°С, а оставшиеся 83% связей рвутся при испарении воды. Случайное совпадение — 0,04% связей рвутся при нагреве воды на 1 кельвин — привело к тому, что жидкая вода формально подчиняется закону Дюлонга и Пти.
Самый существенный вывод, который можно сделать на основе проведенных оценок, таков: структура воды в диапазоне температур от 0°С до 100°С более чем на 80% повторяет структуру льда. Если учесть, что на одну водородную связь приходится примерно 2·104 Дж/моль энергии, то при испарении воды тратится столько энергии, что на каждую испарившуюся молекулу приходится примерно по 2 разорванные водородные связи. Это означает, что молекулы в жидкой воде в среднем занимают положения и ориентации, соответствующие тетраэдрической пространственной структуре типа алмаза. (Экспериментальные данные, полученные с помощью рентгеноструктурного анализа, нейтронографии и других физических методов, позволяют утверждать, что трехмерная приближенно тетраэдрическая сетка водородных связей существует и у льда, и у жидкой воды.)
Теплоемкость материалов — таблица
В строительстве очень важной характеристикой является теплоемкость строительных материалов. От нее зависят теплоизоляционные характеристики стен постройки, а соответственно, и возможность комфортного пребывания внутри здания
От нее зависят теплоизоляционные характеристики стен постройки, а соответственно, и возможность комфортного пребывания внутри здания.
Прежде, чем приступить к ознакомлению с теплоизоляционными характеристиками отдельных строительных материалов, необходимо понять, что собой представляет теплоемкость и как она определяется.
Удельная теплоемкость материалов
Теплоемкость – это физическая величина, описывающая способность того или иного материала накапливать в себе температуру от нагретой окружающей среды.
Количественно удельная теплоемкость равна количеству энергии, измеряемой в Дж, необходимой для того, чтобы нагреть тело массой 1 кг на 1 градус.
Ниже представлена таблица удельной теплоемкости наиболее распространенных в строительстве материалов.
Для того, чтобы рассчитать теплоемкость того или иного материала, необходимо обладать такими данными, как:
- вид и объем нагреваемого материала (V);
- показатель удельной теплоемкости этого материала (Суд);
- удельный вес (mуд);
- начальную и конечную температуры материала.
Теплоемкость строительных материалов
Теплоемкость материалов, таблица по которой приведена выше, зависит от плотности и коэффициента теплопроводности материала.
А коэффициент теплопроводности, в свою очередь, зависит от крупности и замкнутости пор. Мелкопористый материал, имеющий замкнутую систему пор, обладает большей теплоизоляцией и, соответственно, меньшей теплопроводностью, нежели крупнопористый.
Это очень легко проследить на примере наиболее распространенных в строительстве материалов. На рисунке, представленном ниже, показано каким образом влияет коэффициент теплопроводности и толщина материала на теплозащитные качества наружных ограждений.
Из рисунка видно, что строительные материалы с меньшей плотностью обладают меньшим коэффициентом теплопроводности.
Однако так бывает не всегда. Например, существуют волокнистые виды теплоизоляции, для которых действует противоположная закономерность: чем меньше плотность материала, тем выше будет коэффициент теплопроводности.
Поэтому нельзя доверять исключительно показателю относительной плотности материала, а стоит учитывать и другие его характеристики.
Сравнительная характеристика теплоемкости основных строительных материалов
Для того, чтобы сравнить теплоемкость наиболее популярных строительных материалов, таких дерево, кирпич и бетон, необходимо рассчитать величину теплоемкости для каждого из них.
В первую очередь нужно определиться с удельной массой дерева, кирпича и бетона. Известно, что 1 м3 дерева весит 500 кг, кирпича – 1700 кг, а бетона – 2300 кг. Если мы берем стенку, толщина которой составляет 35 см, то путем нехитрых расчетов получим, что удельная масса 1 кв.
м дерева составит 175 кг, кирпича – 595 кг, а бетона – 805 кг. Далее выберем значение температуры, при которой будет происходить накопление тепловой энергии в стенах. Например, это будет происходить в жаркий летний день с температурой воздуха 270С.
Для выбранных условий рассчитываем теплоемкость выбранных материалов:
- Стена из дерева: С=СудхmудхΔТ; Сдер=2,3х175х27=10867,5 (кДж);
- Стена из бетона: С=СудхmудхΔТ; Сбет=0,84х805х27= 18257,4 (кДж);
- Стена из кирпича: С=СудхmудхΔТ; Скирп=0,88х595х27= 14137,2 (кДж).
Из произведенных расчетов видно, что при одинаковой толщине стены наибольшим показателем теплоемкости обладает бетон, а наименьшим – дерево. О чем это говорит? Это говорит о том, что в жаркий летний день максимальное количество тепла будет накапливаться в доме, выполненном из бетона, а наименьшее – из дерева.
Этим объясняет тот факт, что в деревянном доме в жаркую погоду прохладно, а в холодную погоду тепло. Кирпич и бетон легко накапливают в себе достаточно большое количество тепла из окружающей среды, но так же легко и расстаются с ним.
Теплоемкость и теплопроводность материалов
Теплопроводность – это физическая величина материалов, описывающая способность проникновения температуры с одной поверхности стены на другую.
Для создания комфортных условий в помещении необходимо, чтобы стены обладали высоким показателем теплоемкости и низким коэффициентом теплопроводности. В этом случае стены дома будут в состоянии накапливать тепловую энергию окружающей среды, но при этом препятствовать проникновению теплового излучения внутрь помещения.
Примеры для тех или иных веществ
Путем экспериментов удалось выяснить, что показатель является различным для тех или иных веществ. Например, в отношении воды имеется показатель 4,187 кДж. Наибольшим он является у водорода. Для него установлено нормальное значение 14,300 кДж. Наименьшее оно у золота — 0,129 кДж.
Благодаря современным достижениям науки можно увеличить скорость обнаружения интересующих значений и свойств. Если раньше приходилось искать по справочнику соответствующую таблицу, то теперь на любом телефоне появилась опция для поиска через интернет. Наиболее примечательные вещества, теплоёмкость которых представляет интерес чаще всего это:
- воздушные массы (идеальные и реальные газы) — 1,005 кДж;
- металл алюминий — 0,930 кДж;
- медь — 0,385 кДж.