Планета юпитер

Overview

Approximate size comparison of Earth and Jupiter, including the Great Red Spot.

Jupiter is usually the fourth brightest object in the sky, after the Sun, the Moon, and Venus. At times, however, Mars appears brighter than Jupiter.

Jupiter is 2.5 times more massive than all the other planets combined, so massive that its center of mass with the Sun actually lies above the Sun’s surface (1.068 solar radii from the Sun‘s center). It is 318 times more massive than Earth, with a diameter 11 times that of Earth, and its volume is 1300 times as great as that of Earth. Quite naturally, Jupiter’s gravitational influence probably played a large role in the evolution of the Solar System.

Most planetary orbits lie closer to Jupiter’s orbital plane than the Sun’s equatorial plane. (Mercury is the only planet that is closer to the Sun’s equator in orbital tilt.) The majority of short-period comets belong to Jupiter’s family (a result of Jupiter’s mass and relative speed), the gaps («Kirkwood gaps») in the distribution of asteroids in the main belt are mostly due to Jupiter, and the planet may have been responsible for the Late Heavy Bombardment of the inner Solar System’s history. Jupiter has been called the Solar System’s vacuum cleaner, due to its immense gravity well.

As impressive as Jupiter’s mass is, extrasolar planets have been discovered with much greater masses. There is no clear-cut definition of what distinguishes a large planet such as Jupiter from a brown dwarf star, although the latter possesses rather specific spectral lines. Currently, if an object of solar metallicity—the proportion of its matter made up of chemical elements other than hydrogen and helium—is 13 time Jupiter’s mass or larger, large enough to burn deuterium, it is considered a brown dwarf; below that mass (and orbiting a star or stellar remnant), it is considered a planet.
Jupiter is thought to have about as large a diameter as a planet of its composition can; adding extra mass would cause the planet to shrink due to increased gravitational compression. The process of further shrinkage with increasing mass would continue until stellar ignition would be achieved. This has led some astronomers to term it a «failed star.» Although Jupiter would need to be about 75 times as massive to become a star, the smallest red dwarf is only about 30 percent larger than Jupiter.

It is also interesting to note that Jupiter radiates more heat than it receives from the Sun. This additional heat radiation is produced by the «Kelvin-Helmholtz mechanism:» As the planet’s surface cools, the pressure drops and the planet undergoes compression, which heats up the planet’s core. This mechanism is evident on Jupiter and Saturn. It is estimated that Jupiter radiates more energy through this mechanism than it receives from the Sun. As another symptom of this process, the planet shrinks at the rate of a few millimeters each year.

When they were younger and hotter, Jupiter and the other gas giant planets were much larger than they are today. However, because of its lower mass and weaker gravitational pull, Saturn would expand more rapidly than Jupiter with increasing heat. On that basis, one might argue that Saturn must have formerly been larger than Jupiter.

Aurora borealis on Jupiter.

Jupiter also has the fastest rotation rate of any planet within the Solar System, making a complete rotation on its axis in slightly less than ten hours, which results in an equatorial bulge easily seen through an Earth-based amateur telescope. Jupiter is perpetually covered with a layer of clouds, composed of ammonia crystals and possibly ammonium hydrosulfide. It may not have any solid surface, in that the density may simply increase gradually as one moves toward the core.

Jupiter’s best-known feature is the Great Red Spot, a storm larger than the Earth’s size. Mathematical models suggest that the storm is stable and may be a permanent feature of the planet. It is therefore likely that this spot was first observed by Giovanni Domenico Cassini and Robert Hooke four centuries ago. In 2000, three small spots merged to form a larger spot, named Oval BA, which later acquired a red hue very similar to that of the Great Red Spot.

Спутники планеты Юпитер: почему их так много?

Не трудно догадаться, что столь впечатляющие размеры планеты обуславливают наличие у нее большой свиты. По количеству естественных спутников Юпитеру нет равных. Их насчитывается 69 штук. В этом наборе присутствуют и настоящие гиганты, сравнимые по размерам с полноценной планетой и совсем маленькие, едва заметные с помощью телескопов. Есть у Юпитера и свои кольца, схожие с системой колец Сатурна. Кольцами у Юпитера стали мельчайшие элементы частиц, захваченные магнитным полем планеты непосредственно из космоса в период формирования планеты.

Спутники Юпитера

Такое большое количество спутников объясняется тем, что Юпитер имеет самое сильное магнитное поле, оказывающее огромное влияние на все соседние объекты. Сила притяжения газового гиганта настолько велика, что позволяет Юпитеру удерживать вокруг себя столь обширное семейство спутников. К тому же действия магнитного поля планеты вполне хватает для притягивания к себе всех странствующих космических объектов. Юпитер выполняет в Солнечной системе функцию космического щита, отлавливая из открытого космоса кометы и крупные астероиды. Относительно спокойное существование внутренних планет объясняется именно этим фактором. Магнитосфера огромной планеты мощнее, чем магнитное поле Земли в несколько раз.

Поражают размеры этих спутников, которые могут конкурировать даже с некоторыми планетами Солнечной системы. К примеру, спутник Ганимед больше в размерах Меркурия – самой маленькой планеты Солнечной системы. Немногим Меркурию уступает и другой спутник-гигант –  Каллисто. Отличительной чертой спутниковой системы Юпитера является то, что все вращающиеся вокруг газового гиганта планеты имеют твердую структуру.

Юпитер и его спутники

Размеры самых известных спутников Юпитера следующие:

  • Ганимед имеет диаметр 5260 км (диаметр Меркурия составляет 4879 км);
  • Каллисто имеет диаметр 4820 км;
  • диаметр Ио равен 3642 км;
  • диаметр Европы составляет 3122 км.

Одни спутники находятся ближе к материнской планете, другие – дальше. История появления столь крупных естественных спутников пока не раскрыта. Вероятно, мы имеем дело с малыми планетами, которые некогда вращались с Юпитером по соседству. Мелкие спутники являются фрагментами разрушенных комет, прилетающих в Солнечную систему из облака Оорта. Примером может служить падение на Юпитер кометы Шумейкера-Леви, наблюдаемое в 1994 году.

Падение кометы Шумейкера-Леви

Именно спутники Юпитера представляют собой интересующие ученых объекты, так как являются более доступными и схожими по своему строению с планетами земной группы. Сам газовый гигант представляет враждебную для человечества среду, где невообразимо предположить существование каких-либо известных форм жизни.

Описание планеты Юпитер

Самая главная характеристика, выделяющая Юпитер среди остальных планет – его внушительный размер. Диаметр великана около 140 тысяч км, что превышает земной в 11 раз.

Площадь поверхности поражает воображение: свыше 60 миллиардов квадратных километров. Близок по размерам к Юпитеру лишь Сатурн, обладающий огромными кольцами из пыли и камня.

Так какая же планета крупнее: Юпитер или Сатурн? Ответ на вопрос однозначен – Сатурн, имея диаметр в 116 тысяч км, уступает собрату в размерах. Таким образом, Юпитер – крупнейший объект в нашей системе после Солнца.

Если все планеты в Солнечной системе сложить на огромные весы, то их масса не составит и половины массы Юпитера, чей вес – почти 2 октиллиона килограмм. К слову, октиллион – это единица с 27 нулями. Согласно такому описанию, Юпитер – поистине царь среди планет.

По причине огромной массы, Юпитер обращается вокруг своей оси с большой скоростью – 13 км/с. Период обращения вокруг Солнца совершается почти за 12 лет. Чтобы не быть притянутым на поверхность чудовищным магнитным полем, спутник должен достичь первой космической скорости Юпитера – 42 км/с.

Это интересно: на него нельзя приземлиться или послать планетоход, ведь планета не имеет твердой поверхности – она представлена газовыми облаками водорода и гелия. Поэтому ее плотность низкая – всего 1,3 г/см3.

Внешне Юпитер выглядит как шар светло-коричневого цвета, опоясанный темными полосами – вихрями, движущимися с огромной скоростью.

Цвет изменяется в зависимости от химического состава облаков, их температуры и плотности.

В связи с тем, что планета находится далеко от Солнца, температура внешнего края атмосферы составляет 145 градусов Цельсия ниже нуля. Спускаясь ниже, становится теплее из-за возрастающего давления.

Ближе к ядру, где водород переходит в жидкое состояние, температура возрастает до +10 тысяч градусов.

Атмосфера, химический состав и условия на Юпитере

Юпитер является одной из планет первой генерации и появился около 4,5 млрд. лет тому назад, когда Солнечная система только формировалась из вращающегося облака газов и пыли. Ядро Юпитера, вероятно, зарождалось из льда и камней общей массой, превышающей в 15 раз земную.

Давление солнечного света выталкивало атомы легких газов (водорода и гелия) из внутренней по отношению к орбите Юпитера части Солнечной системы, а притяжение больших ледяных ядер нашего гиганта и зарождавшегося по соседству Сатурна постаралось собрать эти атомы возле себя.

Из гелия и водорода, в основном, и состоит атмосфера Юпитера сегодня. Юпитер “оброс” самой большой атмосферой среди всех планет, так как центральное внутреннее ядро его раньше достигло необходимой массы.

К сожалению, гигантская гравитация Юпитера и чудовищное давление не оставляют нам шансов заглянуть хотя бы под верхний слой облаков, поэтому всё что мы можем увидеть визуально – верхние слои атмосферы планеты.

Впрочем, благодаря спектральным анализам, мы достаточно точно можем определить из чего состоит ближайший к нам газовый гигант.

Если не считать ядра, Юпитер на 90% – водород и на 10% – гелий по количеству атомов, и в соотношении 3 к 1 по массе. В атмосфере планеты обнаружены метан, вода, аммиак и многие другие вещества.

Облака Юпитера имеют три слоя:

  • Облака из оледеневшего аммиака. Его температура составляет около −145 °C, давление — около 1 атмосферы.
  • Облака кристаллов сероводорода аммония
  • Водяной лед и, возможно, жидкая вода. Его температура составляет около −130 °C, давление — около 1 атмосферы.

Что находится под облаками? Тут факты у нас почти заканчиваются и начинаются гипотезы.

Известно, что огромная атмосфера Юпитера создает и огромное давление, которое увеличивается при приближении к центру планеты. В таких экстремальных условиях газы в атмосфере находятся в необычных состояниях. Находящийся достаточно глубоко водород под давлением атмосферы, возможно, сформировал слой в жидком металлическом состоянии.

Это и не “земная твердь”, и не океан, и не атмосфера. Такой слой водорода должен иметь свойства, которые не укладываются в наше привычное понимание. В отличие от простого газообразного водорода, жидкий металлический водород способен проводить электрический ток. Устойчивый радиошум и сильное магнитное поле Юпитера излучаются как раз этим слоем металлической жидкости.

Что находится в “сердце” Юпитера и из чего состоит его ядро – мы не знаем. Известно лишь, что но твердое и имеет диаметр около 20 тыс. км.

Внутренний состав Юпитера. На самом деле о том, что представляют себе недра этого газового гиганта, мы можем только догадываться

Тени от спутников

Телескоп с объективом от 80 мм предоставляет широкие возможности для исследования прохождения теней, отбрасываемых спутниками на Юпитер. Более того, для телескопов такого класса подобные наблюдения являются тестом оптических качеств. Если в телескопе тень спутника визуализируется как темное пятно нечеткой формы, перемещающееся по поверхности планеты, значит телескоп справился с испытанием. Заметьте, скорость перемещения пятна намного выше скорости движения деталей атмосферы. Это особенно очевидно около границ планетарного диска.

Тройной транзит спутников

Иную картину увидит наблюдатель, у которого есть телескоп в 150-200 мм. В таком объективе можно увидеть, что тени спутников имеют свои особенности и отличия. Это объясняется разной удаленностью спутников от планеты, а также разницей в их размерах. К примеру, в спокойную прозрачную ночь можно с легкостью увидеть, что тени Европы и Ио отличаются резкими границами и имеют вид маленьких Черных Пятен. А тени Каллисто и Ганимеда наоборот больших размеров и с нечеткими границами.

В ряде случаев можно увидеть двойное прохождение теней. Тогда по планетарному диску одновременно движутся тени от двух спутников. Наблюдатель может самостоятельно сравнить эти тени и сделать выводы об особенностях каждой из них. Намного реже происходит тройное прохождение теней.

Ганимед и Ио отбрасывают тень на Юпитер

Отметим, что тени спутников на планетарном диске – это солнечное затмение, происходящее на Юпитере. Если бы в момент земного солнечного затмения мы будем находиться в космосе, на поверхности нашей планеты мы будем наблюдать ту же картину.

Погода на Юпитере

На Юпитере постоянно бушуют ураганы, беспрерывно изменяющие свою форму и местонахождение. Ветер достигает скорости, превышающей 600 км/ч.

Основными движущими силами выступают потоки энергии исходящие из ядра планеты, а также энергия, выделяемая в процессе вращения Юпитера вокруг своей оси.

Юпитер обволакивают густые облака, состоящие из частиц аммиака. Они могут быть желтого, коричневого или белого цветов. Образование и цвет полос во многом зависят от направления воздушных потоков.

Облачный слой Юпитера составляет порядка 50 км. Интересен факт, что молнии на этой планете в тысячу раз мощнее, чем на Земле.

После долгих наблюдений астрономы пришли к выводу, что на Юпитере почти никогда не бывает хорошей погоды.

Binder

Binder is a service provided by the Binder Project, which is a member of the Project Jupyter open source ecosystem. It allows you to input the URL of any public Git repository, and it will open that repository within the native Jupyter Notebook interface. You can run any notebooks in the repository, though any changes you make will not be saved back to the repository. You don’t have to create an account with Binder and you don’t need to be the owner of the repository, though the repository must include a configuration file that specifies its package requirements.

Supported languages: Python (2 and 3), R, Julia, and any other languages supported by Jupyter.

Ability to install packages: You can specify your exact package requirements using a configuration file (such as or ).

Interface similarity: Binder uses the native Jupyter Notebook interface.

Keyboard shortcuts: Binder uses all of the same keyboard shortcuts as Jupyter.

Missing features: None.

Added features: None.

Ease of working with datasets: If your dataset is in the same Git repository, then it will automatically be available within Binder. If your dataset is not in that repository but is available at any public URL, then you can add a special file to the repository telling Binder to download your dataset. However, Binder does not support accessing private datasets.

Internet access: Yes.

Ability to work privately: No, since it only works with public Git repositories.

Ability to share publicly: Yes. You can share a URL that goes directly to your Binder, or someone can run your notebooks using the Binder website (as long as they know the URL of your Git repository).

Ability to collaborate: No. If you want to work with someone on the same notebook and your repository is hosted on GitHub, then you can instead use the normal pull request workflow.

Performance of the free plan: You will have access to up to 2 GB of RAM. There is no specific limit to the amount of disk space, though they ask you not to include «very large files» (more than a few hundred megabytes). Binder can be , especially when it’s run on a newly updated repository. Sessions will shut down after 20 minutes of inactivity, though they can run for 12 hours or longer. Binder has other usage guidelines, including a limit of 100 simultaneous users for any given repository.

Ability to upgrade for better performance: No. However, you do have the option of setting up your own BinderHub deployment, which can provide the same functionality as Binder while allowing you to customize the environment (such as increasing the computational resources or allowing private files).

Documentation and technical support: Binder has extensive documentation. Community support is available via Gitter chat and a Discourse forum, and product issues are tracked on GitHub.

Conclusion: If your notebooks are already stored in a public GitHub repository, Binder is the easiest way to enable others to interact with them. Users don’t have to create an account, and they’ll feel right at home if they already know how to use the Jupyter Notebook. However, you’ll want to keep the performance limitations and user limits in mind!

Кольца

В 1979 году удалось установить наличие колец вокруг Юпитера. Первым, кто предположил наличие колец, был советский ученый Сергей Всехсвятский. Ученый даже назвал источник происхождения колец – вулканическая термоактивность Ио и его выбросы.

Сергей Всехсвятский — ученый, обнаруживший кольца Юпитера

Состав колец представлен микрочастицами. В основном, это пылевые субчастицы размером с микрон. Поэтому оптически увидеть кольца достаточно сложно.

Другая гипотеза гласит, что кольца возникли в результате столкновений астероидов и комет, частицы которых захватило мощным магнитным полем планеты. В общей сложности планету опоясывают четыре кольца.

Из восьми планет Солнечной системы Юпитер бьет все рекорды размерами, массой, скоростью вращения и опасностью. Величественный гигант обладает мощнейшим магнитным полем и наибольшим числом спутников.

Неприветливая атмосфера планеты и смертельные вихри скрывают от космических аппаратов тайны Юпитера. Изучение Юпитера продолжается и ученым еще предстоит узнать секреты формирования планетарного титана.

Life on Jupiter

It is considered highly unlikely that there is any Earth-like life on Jupiter, as there is little water in the atmosphere and any possible solid surface deep within Jupiter would be under extraordinary pressures. However, in 1976, before the Voyager missions, Carl Sagan hypothesized (with Edwin Ernest Salpeter) that ammonia-based life could evolve in Jupiter’s upper atmosphere. Sagan and Salpeter based this hypothesis on the ecology of terrestrial seas, which have simple photosynthetic plankton at the top level, fish at lower levels feeding on these creatures, and marine predators that hunt the fish. The Jovian equivalents Sagan and Salpeter hypothesized were «sinkers,» «floaters,» and «hunters.» The «sinkers» would be plankton-like organisms which fall through the atmosphere, existing just long enough that they can reproduce in the time they are kept afloat by convection. The «floaters» would be giant bags of gas functioning along the lines of hot air balloons, using their own metabolism (feeding off sunlight and free molecules) to keep their gas warm. The «hunters» would be almost squid-like creatures, using jets of gas to propel themselves into «floaters» and consume them.


This diagram shows the Trojan Asteroids in Jupiter’s orbit, as well as the main asteroid belt.

Что наблюдать на Юпитере

На планете можно найти множество интересных объектов для наблюдения. Сделать процесс максимально простым поможет карта Юпитера.

  • ЮПШ — Южная полярная шапка
  • СПШ — Северная полярная шапка
  • ЮЮУП — Юго-южный умеренный пояс
  • ЮУП — Южный умеренный пояс
  • БКП — Большое красное пятно
  • ЮЭП — Южный экваториальный пояс
  • ЭП — Экваториальный полоса
  • СЭП — Северный экваториальный пояс
  • СУП — Северный умеренный пояс
  • ССУП — Северо-северный умеренный пояс
  • ЮЮУЗ — Юго-южная умеренная зона
  • ЮУЗ — Южная умеренная зона
  • ЮТЗ — Южная тропическая зона
  • ЭЗ — Экваториальная зона
  • СТЗ — Северная тропическая зона
  • СУЗ — Северная умеренная зона
  • ССУЗ — Северо-северная умеренная зона

Юпитер можно смело назвать наиболее интересной планетой для исследований. Она крайне динамично, на ее поверхности постоянно происходят изменения. Сколько бы вы не смотрели на Юпитер, вы никогда не увидите его одинаковым. В первую очередь, причины этого кроются в разной скорости вращения облачного покрова. Так, полный оборот экваториальной зоны проходит за 9 часов 50 минут, а полярных зон – за 9 часов 57 минут. К тому же атмосфера никогда не бывает спокойной.

Там происходят атмосферные течения, циклоны, падения комет и астероидов, поэтому новые детали образуются ежедневно.

Наиболее известные детали на поверхности Юпитера

Если вы планируете серьезно изучать Юпитер, берите в руки телескоп как можно чаще. Чем дольше вы будете проводить наблюдения, тем выше будет ваше мастерство и тем больше деталей вы сможете увидеть на поверхности Юпитера.

Пусть первая встреча с Юпитером будет посвящена его общему обзору. Так вы научитесь находить самые крупные объекты – зоны, пояса, пятна. Затем вы сможете изучать тончайшие детали его поверхности и атмосферы. Большинство из них можно рассмотреть только с помощью большого любительского телескопа при отличных условиях и отработанных наблюдательных навыках.

Красные, белые и чёрные пятна

Как известно, Юпитер – это постоянно меняющаяся планета. Но на его поверхности есть некоторые детали, которые существуют на протяжении долгих лет. Из них наибольшую известность приобрело Большое Красное Пятно, открытое Джованни Кассини в 1665 году. Характер данного образования был изучен далеко не сразу. Только в последние годы миссии космических станций Вояджер и Пионер открыли нам природу Большого Красного Пятна. На самом деле, это долгоживущий вихрь размером 15 000 на 30 000 км, который делает полный оборот за 6 земных суток.

Движение Большого Красного Пятна через короткие промежутки времени

Для каждого любителя астрономии Большое Красное Пятно представляется контрастной деталью, которую можно наблюдать даже в телескопы начального уровня. Но Пятно периодически меняет интенсивность окраса, поэтому регулярно оно практически сливается с поверхностью Юпитера. К примеру, такое явление было зафиксировано в конце XIX, а в конце 1960-х годов Пятно вновь вернулось к своему обычному цвету. Также пятно постоянно уменьшается в размерах, которое наблюдается в течение последних десятилетий. По данным астрономов XIX века, 100-120 лет назад пятно было в 2 раза больше.

Не менее интересно наблюдать на Юпитере и иные устойчивые образования, в число которых входят Белые Пятна FA, BC и DE. Они располагаются у Южного Умеренного Пояса. Белый цвет данных образований сливается с общим фоном поверхности, поэтому их визуальные исследования весьма затруднены. Впервые они были замечены в 1939 году и были идентифицированы как маленькие наросты в Южном Умеренном Поясе. Но уже в 1947 году они приобрели вид заливов у южного края ЮУП. И только затем они трансформировались в белые пятна. Сегодня видимость белых пятен резко упала из-за того, что ЮУП постепенно теряет свою окраску. Но профессиональным астрономам всё-таки удается поймать моменты, когда из-за волнений атмосферы Белые Пятна выделяются на фоне поверхности Юпитера.

Анимация движения Юпитера, на которой можно заменить белые и черные пятна

Изредка атмосфера Юпитера радует наблюдателя красочным зрелищем – образованием крупных Черных Пятен, что вызвано многочисленными осколками комет и астероидов. В середине 1990-х годов такими «провокаторами» стали осколки кометы Шумейкера-Леви 9. Именно от них предположительно появилось Черное Пятно, которое недавно открыл астроном-любитель Энтони Уизли. Данный факт стал дополнительным доказательством того, что регулярные наблюдения Юпитера и отличные знания о его внешнем виде могут сделать любителей астрономии настоящими звездами научного мира.

Вызываем документацию

Если вы не помните аргументы вызываемой функции или хотите посмотреть пример ее реализации, воспользуйтесь знаком вопроса. Он ставится в начале или конце функции, класса или модуля. Например, посмотрим на класс LinearRegression из Python-библиотеки Scikit-learn (о линейной регрессии говорили тут):

In : from sklearn.linear_model import LinearRegression
In : ?LinearRegression

На выходе получаем документацию (docstring). Разработчики Scikit-learn в документацию добавляют примеры использования:

Examples
--------
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> X = np.array(, , , ])
>>> # y = 1 * x_0 + 2 * x_1 + 3
>>> y = np.dot(X, np.array()) + 3
>>> reg = LinearRegression().fit(X, y)
>>> reg.score(X, y)
1.0

Чтобы получить исходный код, используйте два знака вопроса до или после объекта:

In : LinearRegression??