Как зародилась солнечная система, и что нас ждет в будущем?

Проявления ретроградности

Проградное и ретроградное движение планет

Ретроградность может проявляться как в движении планет, так и в движении других объектов планетных систем: спутников, астероидов, комет или звезд в кратных системах. Теоретически возможно существование и ретроградных колец. Кроме того, у многих небесных тел наблюдается ретроградное вращение вокруг своей оси. По современным теоретическим представлениям ретроградное движение или вращение вызвано либо катастрофическими столкновениями, либо гравитационным захватом. Особенно велика доля ретроградных орбит в последнем случае: теоретические моделирования показывают, что при гравитационном захвате наиболее вероятной финальной орбитой является орбита с ретроградным движением. Иногда ретроградность отмечают при наблюдениях движения планет Солнечной Системы на земном небе: во время “петлеобразного“ движения планеты Солнечной Системы могут двигаться, как в прямом, так и в обратном направлении.

Кроме того, возможны запуски искусственных спутников на ретроградные орбиты. Единственной страной, которая осуществляет запуски в ретроградном направлении (обратном вращению Земли) является Израиль. Это происходит по причине того, что Израиль отличается напряженными отношениями со своими соседями. В связи с этим запуски израильских ракет космического назначения происходят в западном направлении, над нейтральными водами Средиземного моря. В 1988-2016 годы Израиль произвел 10 подобных запусков в космос, 8 из них закончились успехом. В этих случаях спутники были выведены на орбиты с наклонением около 140 градусов. В дополнение часто встречаются полярные орбиты искусственных спутников дистанционного зондирования Земли (ДЗЗ), у которых наклонения орбит незначительно превышают 90 градусов. У одной из самых часто используемых полярных орбит – солнечно-синхронной орбиты наклонение составляет 98 градусов. Отличительной чертой солнечно-синхронной орбиты является то, что для искусственного спутника на такой орбите не наблюдается теневых участков орбиты.

Первые примеры ретроградного движения небесных объектов Солнечной Системы были отмечены ещё в древнейшие времена. Так для известной кометы Галлея наклонение орбиты составляет 162 градуса, и наблюдения этой кометы отмечены задолго до нашей эры. Первое открытие ретроградного вращения произошло в конце 18 века (система планеты Уран). В середине 19 века был обнаружен первый пример спутника с ретроградной орбитой (Тритон – спутник Нептуна). В 2009 году было опубликовано открытие первой ретроградной планеты (транзитного горячего юпитера HAT-P-7b).

Каждая планета Солнечной системы движется по эллипсу. Наука Нового времени (Н. Коперник, Дж. Бруно, Г. Галилей, И. Ньютон и другие) Страница 2

Материалы » Концепции современного естествознания » Наука Нового времени (Н. Коперник, Дж. Бруно, Г. Галилей, И. Ньютон и
другие)

1-й закон:

каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

2-й закон:

радиус-вектор, проведенный от Солнца к планете, в равные промежутки времени описывает равные площади.

3-й закон:

квадраты времен обращения планет вокруг Солнца относятся как кубы их средних расстояний от него.

Также Кеплер разработал теорию солнечных и лунных затмений, предложил способы их предсказания, уточнил величину расстояния между Землей и Солнцем, составил Рудольфовы таблицы (с помощью этих таблиц можно было определять положение планет в любой момент времени с высокой степенью точности). Кеплеру принадлежит решение ряда важных для практики стереометрических задач. Он был сторонником гелиоцентрической космологии Коперника.

Творчеством одного из величайших ученых человечества, каковым был Исаак Ньютон

(1643-1727), завершалась вторая научная революция. Его научное наследие чрезвычайно разнообразно. Самое главное научное достижение И. Ньютона было продолжение и завершение дела Галилея по созданию классической механики. Ньютон сформулировал три основных закона движения, которые легли в основу механики как науки.

1-й закон:

всякое тело сохраняет состояние покоя или равномерного и прямолинейного движения до тех пор, пока оно не будет вынуждено изменить его под действием каких-то сил.

2-й закон:

приобретаемое телом под действием какой-то силы ускорение прямо пропорционально этой действующей силе и обратно пропорционально массе тела.

3-й закон:

действия двух тел друг на друга равны по величине и направлены в противоположные стороны.

Данная система законов движения была дополнена открытым Ньютоном законом всемирного тяготения, согласно которому все тела, независимо от их свойств и от свойств среды, в которой они находятся, испытывают взаимное притяжение, прямо пропорциональное их массам и обратно пропорциональное квадрату расстояния между ними. Ньютон создал дифференциальное и интегральное исчисления. Он сделал важные астрономические наблюдения, внес большой вклад в развитие оптики (опыты в области дисперсии света). В 1687 году вышел в свет главный труд Ньютона «Математические начала натуральной философии», заложивший основы современной теоретической физики.

Ретроградное движение за пределами Солнечной Системы

В последние десятилетия появилась возможность наблюдать чужие планетные системы у других звезд, а так же их протопланетные диски. К настоящему времени открыто около 4 тысяч внесолнечных планет. Эти открытия показали, что почти у каждой звезды могут существовать хотя бы небольшие планеты на небольшом расстоянии от звезды (внутри земной орбиты).

Измерения лучевых скоростей звезд с известными транзитными планетами позволяют определить угол между экватором звезды и плоскостью орбиты транзитной планеты (т.н. Rossiter–McLaughlin(RM)-эффект). К настоящему времени этот эффект измерен для 134 транзитных планет.

Пульсация Солнца

Солнце то расширяется, то сжимается, периодичность этого процесса — пять минут. Впечатление такое, что наше светило дышит. Никто не знает, почему пульсирует Солнце. Есть предположение, что расширение и сжатие вызвано прохождением через солнечные газы звуковых волн.

Может существовать еще один тип пульсации Солнца. Ученые предполагают, что гравитация заставляет пульсировать Солнце каждые полчаса. Почему? Плотные газы из области солнечного ядра распространяются в область менее плотных газов в поверхностных слоях Солнца. При этом светило слегка расширяется. Затем сила тяготения возвращает эти плотные газы назад, к центру нашей звезды. В результате Солнце снова сжимается.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Форма Земли

Сейчас нам сложно представить, что раньше люди верили, будто Земля плоская. У греков, например, плоскость просто парила в воздухе и была окружена ледниками. А в Индии верили, что планета покоится на трех слонах, которые стоят на черепахе. Впрочем, кое-кто до сих пор так думает. Доказательств того, что наша планета на самом деле не плоская — много, но вот вам парочка, чтобы можно было поддержать светскую беседу.

Гравитация

Гравитация всегда притягивает все в сторону центра масс. Наша Земля — сферической формы, а центр масс сферы находится как раз в ее центре.

Гравитация притягивает все объекты на поверхности в направлении ядра Земли, то есть вниз, независимо от их местоположения — что мы всегда и наблюдаем.

Если представить, что Земля плоская, то гравитация должна будет притягивать все, что на поверхности, к центру плоскости. То есть если вы окажетесь у края плоской Земли, гравитация будет тянуть вас не вниз, а к центру диска.

Чтобы доказать свою точку зрения, сторонникам плоской Земли придется поискать на планете место, где вещи падают не вниз, а вбок.

Луна

Если бы Земля была плоской, да еще и со слонами и черепахой, то при лунном затмении мы бы видели не равномерно растущую тень, а примерно такую картину:

Но, пожалуй, это сильно отличается от реальности.

Тени

На плоскую Землю свет от Солнца падал бы, как свет от фонаря. То есть высокие объекты в противоположном от Солнца направлении после заката оставались бы в тени.

А на шарообразной Земле небоскребы или горы будут освещены Солнцем после заката или перед рассветом.

Именно это вы увидите, если застанете рассвет или закат в горах — или посмотрите на фотографии.

Окей, Земля все-таки не плоская — с этим разобрались. Но и шаром ее назвать нельзя: Земля имеет форму эллипсоида.

Эллипсоид — это такой приплюснутый шар, в сечении у которого эллипс. Именно по траектории эллипса вращаются все спутники.

Наклон оси вращения

Следует остановиться на положении оси вращения планет. Все планеты имеют наклон оси вращения к плоскости орбиты (см. рис. 4). Предполагается, что данный наклон является следствием столкновения с небесными телами. На пути следования за миллиарды лет возникали катастрофы, когда происходило столкновение планет себе подобными. После столкновения возникали спутники, и мог измениться угол наклона оси вращения. Многочисленные кратеры на поверхности планет и спутников, молчаливые свидетели бурной эпохи конкуренции становления и развития планетарной системы. Такие катастрофы не миновали ни одну планету, но больше всех пострадали Уран и Плутон, которые вращаются лежа на боку.

Несомненно, столкновение планет с астероидами и друг с другом являлось прямым действием на положение их в пространстве, но есть еще одна причина, по которой ось вращения не перпендикулярна к плоскости эклиптики.

Как было сказано выше, у каждой планеты по мере движения по орбите в первоначальный момент возникал дисбаланс приращенной массы. Масса наращивалась с нагретой стороны по орбитальному вектору движения. Поэтому, когда планета сдвигалась с места (начало вращения), то ее ось изначально уже могла не совпадать с плоскостью орбиты. Характерным примером является Юпитер. Ось его вращения почти перпендикулярна к плоскости орбиты (наклон 3,13), из-за чего на этой планете нет смены времен года. Пожалуй, такое малое отклонение оси от плоскости орбиты является более логичным объяснением эволюционной гипотезы образования солнечной системы. По идее, при идеальных условиях возмущающих воздействий на планеты, то все они должны были иметь перпендикулярную ось вращения к своей эклиптике. Но не у всех планет  все шло по намеченной программе. Один Юпитер справился с поставленной задачей блестяще! Это лишний раз говорит о том, что он был гораздо массивнее других планет и космических объектов. Внешние, ударные столкновения не смогли повлиять на устойчивость гиганта, защищенного плотной газовой атмосферой, а позднее и мощным магнитным полем.

Выводы.

  • Земля и другие планеты при своем рождении не имели скорости вращения  вокруг своей оси.
  • Первоначальным моментом для вращения послужило неравномерное распределение массы в объеме из-за асимметричного действия гравитации.
  • Планеты наращивали массу, все больше раскручивались и принимали шарообразную форму.
  • Протопланетное вещество и солнечная энергия раскручивали планеты с запада на восток.

Назад  Вперед

Метки

Адсорбция
Библия
Броуновское движение
Вращение Земли
Гравитационная постоянная
Гравитация
Граница Мохоровичича (Мохо)
Давление света
ЗЭТ
Закон Всемирного Тяготения
Землетрясение
Землетрясения
Земля
Ломоносов
Магнитные полюса
Масса
Планеты
Почему не падают облака
Смена магнитных полюсов
Солнце
Тепловой терминатор
Трансформатор Тесла
Тунгусский метеорит
Фотонно-квантовая гравитация
Эффект Мёссбаура
гравитон
детонация
зона электрических токов
крафон
магнитное поле Земли
молекулярно-кинетическая теория
постоянная гравитации
притяжение
серебристые облака
температура
теплота
теплота трение
термон
тяготение
фотон
электромагнитные волны
эффект гравитационного смещения

Траектории:

«Затем мы определили, как звезды движутся в этой маленькой галактике, которая количественно определяется параметром анизотропии, — объясняет Массари. Если они высоки, звезды имеют очень вытянутые траектории, и если они очень маленькие, они имеют круговые орбиты. «Зная это, мы можем определить свойства галогенового газа темной материи, в который встроена галактика. Но наше измеренное значение было очень удивительным, поскольку стандартные модели этого не допускали». Это означает, что некоторые из предположений, на которых основаны эти модели, должны быть ошибочными.

«До сих пор мы смогли тестировать модели только с помощью движения прямой видимости. Это казалось прекрасным, но теперь, при правильном движении, стандартные модели разрушаются», — объясняет Массари. «Одно из возможных объяснений заключается в том, что модели предполагают, что все звезды находятся в одной популяции звезд». Но мы знаем, что Скульптор сложный, по крайней мере, с двумя звездными популяциями (еще один компактный и еще один расширенный). Существует модель, которая включает это и предсказывает анизотропию, наблюдаемую Массари и коллегами, поскольку большинство звезд, которые они измеряют, относятся к самой компактной популяции.

Что такое гравитация простыми словами детям.

с лат. gravitas — «тяжесть» ) — невидимая сила , притягивающая объекты с меньшей массой к более массивным. Таким образом определяющая положение галактик, планет, спутников и всех небесных тел. В контексте Земли отвечает за то, что объекты притягиваются к поверхности и не улетают за пределы планеты. Это одно из четырех фундаментальных взаимодействий в физике, определяющих функционирование вселенной, наряду со слабым и сильным атомными взаимодействиями и электромагнетизмом.

Точного научного определения термина не существует, поскольку подходы к изучению гравитации и теории относительно её природы постоянно разрабатываются, дополняются и совершенствуются. Актуальными на сегодня являются закон всемирного тяготения Ньютона вместе с его дополнениями и общая теория относительности Эйнштейна.

Гравитация и закон всемирного тяготения

Закон всемирного тяготения, предложенный Ньютоном, не ставит своей целью описание природы возникновения гравитации, но позволяет совершать верные математические расчеты на практике. Для этого пользуются формулой

, где:

  • F — сила притяжения;
  • r — расстояние между их центрами;
  • G — гравитационная постоянная, равная 6.67×10 -11 м 3 /кг×с 2 и отражающая то, с какой силой бы действовали друг на друга два тела, размещенные на расстоянии 1 метра и имеющие одинаковую массу в 1 килограмм.

Собственное гравитационное поле создается каждым объектом Вселенной вне зависимости от его массы.

Гравитация на каждой из планет разная и напрямую зависит от массы астрономического тела. Так, к примеру, показатели гравитации на Юпитере многократно превышают земные. На тело, имеющее земной вес в 60 килограмм, Юпитер будет оказывать такую гравитацию, как Земля оказывает на тело с массой 142 килограмма.

Гравитация и общая теория относительности

Несмотря на то, что закон всемирного тяготения Ньютона отлично справляется с математическим описанием гравитации, он порождает конфликты и несоответствия, когда речь заходит о дальности действия и скорости распространения этой величины.

Дело в том, что в теории Ньютона предполагается, что гравитация окутывает всю вселенную и действует мгновенно в каждой её части. Однако, это невозможно исходя из того, что пределом допустимой скорости в физике является скорость света. Даже если бы скорость распространения гравитации была равна скорости света, она бы не могла мгновенно срабатывать даже на небольших участках космоса, поскольку нуждается в преодолении расстояния.

Решение проблемы нашлось в общей теории относительности Эйнштейна, которая рассматривает гравитацию не как силу, но как искривление времени-пространства под влиянием масс.

Для наглядности можно представить натянутую вокруг обруча ткань. После того, как на нее положат яблоко, она искривится. Если же после этого положить рядом тяжелую гирю, она искривится уже с центром в новом месте , а яблоко притянет к гире.

В физике элементарных частиц была выработана концепция гравитона — гипотетически существующей фундаментальной частицы, которая ответственна за гравитацию. Такая частица имеет нулевую массу, однако, обладает энергией, позволяющей ей влиять на поведение других элементарных частиц.

Понятие гравитационных волн

Несмотря на то, что общая теория относительности Эйнштейна уже давно была принята научным сообществом, она нашла очередное свое подтверждение с открытием физиками гравитационных волн в 2015 году.

Людям, далеким от теоретической физики и астрономии, будет нетрудно представить гравитационные волны в виде кругов, некоторое время разрастающихся, а затем затухающих после того, как в воду был брошен камень. Они имеют относительно похожую форму и структуру, но проявляются не на поверхности воды, а в пространстве-времени Вселенной.

Гравитационные волны оказывают дополнительное влияние на все близлежащие объекты и возникают при резкой смене массы в конкретной точке. Примером такого изменения в структуре космоса может быть слияние сверхмассивных черных дыр.

Ученые не могли столь долго открыть такие волны из-за низкой силы гравитации. Даже при сегодняшнем уровне развития технологий для этого пришлось поместить в вакуум четырехкилометровый детектор , состоящий из подвешенных зеркал.

Людям ошибочно кажется, что гравитация невероятно сильна. На самом же деле, это самая слабая из всех фундаментальных взаимодействий. Иллюстрацией того, насколько сильно её превосходит, к примеру, электромагнитное взаимодействие может служить факт того, что даже маленькие магниты на холодильник надежно закреплены магнитным притяжением на своем месте и будто игнорируют силу земного притяжения.

Проект «Зависимость времени падения от высоты»

Физика утверждает, что свободное падение происходит тогда, когда единственная сила, воздействующая на объект, — это гравитация. Учитывая, что ускорение свободного падения на земле постоянно, расстояние падения объекта пропорционально времени падения. В этом эксперименте вы сможете определить ускорение свободного падения, а также протестировать ваше собственное время реагирования. Время реагирования – это время, которое требуется вам для того, чтобы отреагировать на какое-либо событие: в данном случае, падение метровой линейки или денежной купюры. Быстрее ли ваша реакция, чем ускорение свободного падения.

Ход эксперимента:

  1. Пусть ваш
    друг возьмет в руки линейку, так чтобы
    сторона, на которой отмечен «0», находилась
    сразу над вашей рукой.
  2. Он должен
    включить таймер сразу после того, как
    выпустит из рук линейку и остановить
    таймер сразу, когда вы её поймаете.
  3. Запишите
    расстояние и время.
  4. Повторите
    несколько раз, бросая линейку с разной
    высоты. Как взаимосвязаны время и
    расстояние, пройденное предметом?
  5. Запишите
    результаты, постройте график. Время
    будет отмечено на оси x, а расстояние,
    пройденное предметом, будет отмечаться
    на оси y.
  6. Используйте
    следующее уравнение, чтобы подсчитать
    время, которое потребуется для того,
    чтобы линейка упала. Насколько близки
    ваши результаты и показатели секундомера?

d=g*t2/2,

где d – это расстояние, пройденное объектом, в метрах,g – ускорение свободного падения,t– время в секундах.

  1. Рассчитайте
    ускорение в каждом пункте графика.
    Насколько оно совпадает с ускорением
    свободного падения на Земле?

a=2d/t2.

  1. Повторите
    эксперимент с денежной купюрой.
    Используйте вышеупомянутое уравнение,
    чтобы подсчитать, сколько времени
    понадобится для того, чтобы купюра
    прошла через ваши пальцы по всей длине.
    Сможете ли вы поймать её?

Вывод:

Падают
ли все объекты с одинаковой скоростью?
Имеет ли значение вес объекта для
скорости падения тела?
Как связаны расстояние и время свободного
падения объектов? Как определить силу
свободного падения?

График
результатов показывает, что проделанное
расстояние пропорционально квадрату
времени, затраченному в процессе падения.
В результате расчётов ускорения вы
должны получить примерно 9,81 м/с². Время
реагирования человека составляет
приблизительно 0,25 секунды,
что для большинства людей не достаточно
быстро, чтобы успеть ухватить купюру.
Почему? График, который вы построили,
покажет, что чем дольше падает линейка,
тем быстрее она прекращает движение.
Это объясняет кривая на графике: из-за
постоянного ускорения, вызванного силой
гравитации, скорость объекта будет
расти быстрее.

При
свободном падении ускорение всех тел
одинаково, этот факт объясняется тем,
что сила тяжести пропорциональна
массе Земли. Также, при этом, сила
гравитации Земли, тянущая вниз, и
сила сопротивления воздуха, подталкивающая
вверх, равны. Хорошей аналогией будет
полет парашютиста:
несмотря на то, что гравитация всё ещё
действует на его тело, скорость
его падения не настолько
большая, поскольку сила воздуха
поддерживает его. В этом эксперименте
сопротивление воздуха и торможение не
являются главным вопросом, поскольку
объекты падают на очень короткие
расстояния.

Вращение планет вокруг Солнца

Все планеты имеют способность вращаться вокруг Солнца, и они входят в состав Солнечной системы

Солнце обладает важной особенностью притягивать космические объекты, а эта сила позволяет удерживаться этим объектам, таким образом, как шарик на веревочке

Дело в том, что наше светило по своему возрасту намного старше всех сформированных объектов, которые его окружают. Эти объекты родились благодаря облаку космической пыли. Через эту пыль пролетало Солнце и притянуло к себе это облако, которое стало вращаться вокруг него и со временем из него образовались планеты. В момент притяжения облака к Солнцу большая его часть осталась позади, а меньшая часть оказалась перед ним. Поэтому Солнце практически находится в середине этих планет, что позволяет им вращаться, то есть меняться местами.

Солнечная система — какие в ней планеты и как они расположены

Солнечная система — это совокупность, состоящая из центральной звезды — Солнца и небесных тел, обращающихся вокруг него. Солнечная система включает в себя:

  • Солнце (единственная звезда Солнечной системы);
  • 8 планет (Земля в том числе);
  • 415 спутников;
  • десятки или сотни тысяч различных малых тел (кометы, метеорные тела, космическая пыль и др.).

Расположение планет по порядку от Солнца:

  • первая планета — Меркурий;
  • вторая планета — Венера;
  • третья планета — Земля;
  • четвёртая планета — Марс;
  • пятая (планета-гигант) — Юпитер;
  • шестая (планета-гигант) — Сатурн;
  • седьмая (планета-гигант) — Уран;
  • восьмая (планета-гигант) — Нептун;
  • (раньше считался девятой, самой дальней планетой от Солнца, но в 2006 году он стал классифицироваться как «карликовая планета») — Плутон.

Планеты Солнечной системы объединены в группы:

Внутренние планеты (планеты земной группы):

  • Меркурий;
  • Венера;
  • Земля (самая массивная планета в группе);
  • Марс.

Внешние планеты (планеты-гиганты):

  • Юпитер;
  • Сатурн;
  • Уран;
  • Нептун.

В 2006 году ввели новый тип объектов в Солнечной системе под названием «карликовые планеты«. К ним относятся:

  • Церера;
  • Плутон;
  • Хаумея;
  • Макемаке;
  • Эрида.

Внутренние планеты или планеты земной группы

Планета земного типа — это небесное тело, состоящее из силикатных пород (такие, в которых основа — диоксид кремния) или металлов, и обладает твёрдым поверхностным слоем.

Они находятся ближе к Солнцу. В этой группе — Меркурий, Венера, Земля и Марс. Все они обладают малыми массами и размерами. У планет земной группы также мало лун (спутников) или их нет:

  • нет лун — у Венеры и Меркурия;
  • один — у Земли (Луна);
  • два — у Марса (Фобос и Деймос).

Самая близкая планета к Солнцу — Меркурий. Его средняя удалённость от Солнца — 57.9 млн. км, но иногда эта дистанция может быть только 46 млн. км, но Меркурий может удалиться и на 69.8 млн. км.

Ещё Меркурий также и наименьшая планета в Солнечной системе. А в 2012 году учёные заметили там следы органического материала. Самая крупная планета в земном типе — Земля.

Внешние планеты или планеты-гиганты

Солнце — самое большое тело в Солнечной системе, после него идут планеты-гиганты: Юпитер, Сатурн, Уран и Нептун. Также их называют «газовые гиганты». Газовый гигант — это большая планета, состоящая в основном из газов, таких как водород и гелий, с относительно небольшим ядром.

Внешние планеты расположены дальше от Солнца, чем внутренние. Газовые гиганты, в отличие от каменистых планет (как Земля), не имеют чётко выраженной поверхности, т. е. у них нет границы между тем, где заканчивается атмосфера и начинается поверхность, поэтому на этих планетах невозможно приземлиться.

Их атмосфера постепенно становится плотнее к ядру (возможно между атмосферой и ядром всё же существуют жидкие или подобные жидкостям состояния).

Ледяные гиганты

Существует ещё один отдельный класс (или подкласс газовых гигантов) — это ледяные гиганты. В Солнечной системе ими считаются две планеты: Уран и Нептун. Большинство массы других двух планет-газовых гигантов (Юпитера и Сатурна) — это водород и гелий, а у ледяных гигантов — лёд.

На Уране температура достигает –220ºC, а средняя температура на Нептуне около –230ºC. Самая большая планета в нашей Солнечной системе — Юпитер.

Наша галактика

Наша галактика называется Млечный Путь. По словам учёных, Млечный Путь — это спиральная система с диаметром около 100 тыс. световых лет и толщиной 1 световой год. Также по их подсчётам, в ней 150–200 миллиардов звёзд и ещё огромное количество других, самых разнообразных космических объектов.

Как увидеть Млечный Путь

Теоретически можно увидеть Млечный Путь в любое время года в любой части мира, но самые лучшие месяца для наблюдения — примерно с середины марта до середины октября.

Невозможно увидеть Млечный Путь из городов, и даже деревень, из-за светового загрязнения. Поэтому нужно отъехать как можно дальше от населённых пунктов.

Другие Солнечные системы

Только наша планетная система официально называется «Солнечной». Но на данный момент астрономы обнаружили в нашей галактике уже более 2500 других звёзд, с вращающимися вокруг них планетами.

Наше Солнце — лишь одна из 200 миллиардов звёзд в нашей галактике. Таким образом, у учёных есть очень много места на поиски экзопланет (планеты за пределами нашей Солнечной системы).