Какие тайны хранят космические карлики?

Когда стали известны белые карлики?

Несмотря на то, что первым белым карликом, открытым астрофизиками, считается Сириус В, имеются сторонники версии более раннего знакомства научного сообщества со звездными объектами этого класса. Еще в 1785 году астроном Гершель впервые включил в звездный каталог тройную звездную систему в созвездии Эридана, разделив все звезды по отдельности. Только спустя 125 лет астрономы выявили аномально низкую светимость 40 Эридана В при высокой цветовой температуре, что послужило поводом для выделения таких объектов в отдельный класс.

40 Эридан

Объект обладал слабым блеском, соответствующим звездной величине +9,52m. Белый карлик обладал массой ½ солнечной и имел диаметр меньше земного. Эти параметры противоречили теории внутреннего строения звезд, где светимость, радиус и температура поверхности звезды являлись ключевыми параметрами определения класса звезды. Маленький диаметр, низкая светимость с точки зрения физических процессов не соответствовали высокой цветовой температуре. Такое несоответствие вызывало много вопросов.

Сириус

Что такое белый карлик: звезда или фантом?

Только недавно, в XX веке ученым стало понятно, что белый карлик – это все, что осталось в космосе от обычной звезды. Изучение звезд с точки зрения термоядерной физики дало представление о процессах, которые бушуют в недрах небесных светил. Звезды, образовавшиеся в результате взаимодействия сил гравитации, представляют собой колоссальный термоядерный реактор, в котором постоянно происходят цепные реакции деления ядер водорода и гелия. В таких сложных системах темпы эволюции компонентов неодинаковы. Огромные запасы водорода обеспечивают жизнь звезды на миллиарды лет вперед. Термоядерные водородные реакции способствуют образованию гелия и углерода. Следом за термоядерным синтезом в дело вступают законы термодинамики.

Белый карлик

Схема термоядерного синтеза звезды

Термоядерный синтез истощает звезду. Водород иссякает, а гелий, как более массивный компонент может проэволюционировать дальше, достигнув нового состояния. Все это приводит к тому, что сначала красные гиганты образуются на месте обычной звезды, и звезда покидает главную последовательность. Таким образом, небесное светило, встав на путь своего медленного и неизбежного старения постепенно трансформируется. Старость звезды – это долгий путь в небытие. Все это происходит очень медленно. Белый карлик является небесным светилом, с которым вне пределов главной последовательности, происходит неизбежный процесс угасания. Реакция синтеза гелия приводит к тому, что ядро стареющей звезды сжимается, светило окончательно теряет свою оболочку.

Действительно ли коричневые карлики создают свои планетные системы?

Впрочем, говорить том, что коричневые карлики действительно могут формировать собственные планетные системы подобно звездам, пока сложно.

Например, обнаруженные супер-Юпитеры планетарной массы 2M1207B и 2MASS J044144, которые вращаются вокруг коричневых карликов на больших орбитальных расстояниях, судя по всему вполне могут быть образованы посредством аккреции, а не из газопылевого облака, и поэтому вообще не являются в полной мере планетами, а скорее могут оказаться “субкоричневыми карликами”, т.е. “младшими братьями” центрального тела системы.

Первое открытие маломассивного спутника на орбите коричневого карлика (ChaHα8) при малом орбитальном расстоянии с помощью метода лучевых скоростей положило начало обнаружению планет вокруг коричневых карликов на орбитах в несколько астрономических единиц или меньше. Однако и тут нас ждало скорее не открытие, а повод подискутировать: соотношением масс между спутником и главным объектом ChaHα8 составило всего около 0,3, т.е. эта система больше напоминает не планетную систему, а двойную звезду.

Позже, в 2013 году, на орбите коричневого карлика был обнаружен первый компаньон планетарной массы с относительно малой орбитой. В 2015 году была найдена первая планета земной массы на орбите коричневого карлика, OGLE-2013-BLG-0723LBb, имеющая массу примерно как у Венеры.

Обнаруженные диски вокруг коричневых карликов имеют многие из тех же функций, что и диски вокруг звёзд. Таким образом, предполагается, что из них с течением времени всё же будут сформированы планеты, обращающиеся вокруг коричневых карликов. При этом, интересно, что учитывая малую массу дисков коричневых карликов, большинство планет будет планетами земной группы, а не газовыми гигантами.

Косвенным доказательством этому служит простой факт: если бы газовый гигант вращался вокруг коричневого карлика и последний лежал бы в плоскости его орбиты, то его легко было бы обнаружить транзитным методом, потому что они имеют примерно одинаковый диаметр. Зона аккреции для планет вокруг коричневого карлика расположена очень близко к самому коричневому карлику, поэтому приливные силы будут оказывать большое влияние на сформированные планеты.

Таким образом, сам по себе процесс формирования “настоящих” планет у “ненастоящих” звезд скорее всего в наше время уже является доказанным фактом. Планеты, вращающиеся вокруг коричневых карликов, скорее всего, будут каменистыми планетами, однако испытывающими серьезный дефицит воды. Исключение составляют сформированные на внешнем краю газопылевого диска планеты, которые в силу более низкой температуры аккреции теоретически могут сохранить часть воды в своём составе.

Проблема первичных красных карликов

Одна из загадок астрономии — слишком малое количество красных карликов, совсем не содержащих металлов. Согласно модели Большого взрыва, первое поколение звёзд должно было содержать только лишь водород и гелий (и совсем небольшое количество лития). Если в числе этих звёзд были красные карлики, то они должны наблюдаться сегодня, чего не происходит. Общепринятое объяснение заключается в том, что звезды с малой массой не могут сформироваться без тяжёлых элементов. Так как в лёгких звёздах протекают термоядерные реакции с участием водорода в присутствии металлов, то ранняя протозвезда с малой массой, лишённая металлов, не в состоянии «зажечься» и вынуждена оставаться газовым облаком до тех пор, пока не получит больше материи. Всё это служит поддержкой теории о том, что первые звёзды были очень массивными и вскоре погибли, выбросив большое количество металлов, необходимых для формирования лёгких звёзд.

Красный гигант

Превращение желтого карлика в красного гиганта является одним из самых необычных превращений, известных современной науке: гелиевое ядро Солнца, размером с гигантскую планету, сжимается и нагревается. В ответ на это Солнце станет шире в 100 раз. Разросшееся светило поглотит Меркурий и Венеру, а возможно, и Землю. Астрономы, наблюдающие из другой Солнечной системы, классифицировали бы эту раздутую версию нашего Солнца как красного гиганта.

Необходимо отметить, что с превращением Солнца в красный гигант неизбежно произойдут новые виды термоядерных реакций, в результате которых ядро звезды еще больше сожмется и нагреется. Когда температура ядра достигнет 100 миллионов градусов по Цельсию, гелий воспламенится и начнет плавиться в углерод и кислород. Это приведет к тому, что Солнце будет несколько уменьшаться, но через некоторое время – и в течение следующих 100 миллионов лет – оно снова начнет расширяться. На последней фазе жизни произойдет циклический, мягкий выброс газа – астрономы называют это планетарной туманностью.

Вот какую красоту оставляют после себя красные гиганты

Еще три с половиной миллиарда лет спустя яркость Солнца возрастет на 40%. К этому времени, как полагают исследователи, наша планета превратится в нечто, напоминающее современную Венеру: вода с поверхности Земли полностью исчезнет, что приведет к окончательной гибели всех наземных организмов (при условии, что они смогли адаптироваться к изменившимся условиям миллиарды лет назад). Спустя еще 6,4 миллиардов лет, Солнце начнет относительно быстро расширяться, сохраняя постоянную светимость. В итоге через 7 миллиардов лет от настоящего времени наша родная звезда превратится в субгиганта – звезду, в ядре которой закончилось все водородное топливо.

Виды звезд в наблюдаемой Вселенной

Во Вселенной существует множество различных звезд. Большие и маленькие, горячие и холодные, заряженные и не заряженные. В этой статье мы назовем основные виды звезд, а также дадим подробную характеристику Жёлтым и Белым карликам.

  1. Жёлтый карлик. Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K. Подробнее об этом типе звезд нем смотрите ниже.
  2. Красный гигант. Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования. Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.
  3. Белый карлик. Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта. Подробнее об этом типе звезд нем смотрите ниже.
  4. Красный карлик. Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.
  5. Коричневый карлик. Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.
  6. Субкоричневые карлики. Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.
  7. Черный карлик. Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.
  8. Двойная звезда. Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.
  9. Новая звезда. Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.
  10. Сверхновая звезда. Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.
  11. Нейтронная звезда. Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10-20 км в диаметре. Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.
  12. Пульсары. Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.
  13. Цефеиды. Цефеиды – класс пульсирующих переменных звёзд с довольно точной зависимостью период-светимость, названный в честь звезды Дельта Цефея. Одной из наиболее известных цефеид является Полярная звезда. Приведенный перечень основных видов (типов) звезд с их краткой характеристикой, разумеется, не исчерпывает всего возможного многообразия звезд во Вселенной.

Хаумеа

Карликовая планета Хаумеа была открыта в 2005. От остальных ее отличает яйцевидная форма и невероятная скорость вращения вокруг собственной оси. Еще одна уникальная особенность Хаумеа — наличие колец и целого семейства малых тел, возникших в результате столкновения небесного тела с крупным астероидом.

Поперечный и продольный
диаметр планетарного карлика сильно разнятся. У экватора Хаумеа почти равна
Плутону, тогда как поперек – в два раза меньше его.

Расположена Хаумеа в
поясе Койпера в 6,43 млрд. км от Солнца. На ее движение незначительно влияет
гравитация Нептуна.

По составу этот карлик
также представляет собой ледяное небесное тело. Его поверхность представляет
собой толстый слой водяного льда с примесями минералов и углеводородов.
Атмосферы Хаумеа не имеет.

Типы карликовых светил

Стоит отметить, что все объекты класса обладают небольшим размером, но могут отличаться другими характеристиками. Поэтому звезды карлики поделили на типы и разновидности.

Звёзды в космосе

Звезды белые карлики

Между прочим, белый карлик это потухшая и остывающая звезда. Другими словами, тело, находящееся на конечном этапе эволюции. Несмотря на то, что по размеру они похожи с нашей планетой, масса примерно такая же, как солнечная. Причем данный тип относится к спектральному классу А.Как вы считаете, какая звезда превращается в белый карлик и чем отличаются белые карлики от обычных звезд?По сути, звёздное тело малой и средней величины может превращаться в данный тип. Но только на завершающей стадии своего жизненного цикла. Это, так называемые вырожденные звёзды. В них давление вырожденного газа оказывает сопротивление гравитации. Кстати, именно поэтому структура белых карликов отличается от остальных светил. Поскольку высокое давление оказывает прямое воздействие на атомы. Можно сказать, что при таких условиях возникает гравитационный коллапс. В результате формируется сильно сжатая и плотная структура из атомного ядра и электронов.Правда, давление вырожденного газа не позволяет коллапсу продолжаться. И таким образом происходит превращение объекта в белое карликовое светило. Но при условии, что его масса не более солнечной в 1,4 раза. Если же она больше, то образуется нейтронная звезда.

Белый карлик

Какие звезды называют желтыми карликами?

На самом деле, желтый карлик представляет собой тип звёздных тел главной последовательности, которые относятся к спектральному классу G. По оценке учёных, их масса может быть от 0,8 до 1,2 солнечных масс.После того, как в них сгорает весь водород, жёлтая карликовая звезда расширяется и превращается в красный гигант.

Солнце (жёлтый карлик)

Оранжевые карликовые светила

Еще один тип главной последовательности звёзд малого размера и спектрального класса К. Их масса колеблется от 0,5 до 0,8 массы Солнца, а длительность жизни выше нашего главного светила.Можно сказать, что оранжевые представители находятся где-то между жёлтыми и красными собратьями.

Красные карлики

Итак, звезда красный карлик представляет собой небольшое тело с невысоким значением массы. В результате для таких космических объектов характерны низкая температура и слабый уровень светимости. Собственно говоря, по этой причине они не видны с Земли без применения специальных приборов.На диаграмме Герцшпрунга-Рассела находятся в самом низу. Главным образом, они относятся к позднему спектральному классу, чаще всего к классу М.Что интересно, наша галактика Млечный Путь богата именно на красных карликовых звёзд. По оценке астрономов, на их долю приходится до 80% всех астрономических тел в пределах нашей галактической системы.

Проксима Центавра (красный карлик)

Коричневые представители

И наконец, коричневый карлик — звезда со слабой яркостью (класс Т). Поскольку при их формировании начальная масса небольшая. Из-за чего внутри них нет ядерных реакций. Они попросту не могут возникнуть. Как оказалось, коричневые светила являются очень холодными объектами.По данным учёных, в них протекают термоядерные реакции синтеза лёгких элементов. К примеру, лития, бора, бериллия. Однако тепловыделение небольшое, поэтому ядерные процессы заканчиваются. А само космическое тело довольно скоро остывает и превращается в объекты, похожие на планеты.

Корчневый карлик

Какие звезды карлики носят названия чёрные или мёртвые

В действительности, черный карлик — небольшое холодное светило, внутри которого отсутствуют какие-либо ядерные реакции. Либо потому что массы не хватило для возникновения этих процессов, либо в ядре сгорело всё топливо и они просто погасли. Во втором случае, их называют умершими или мёртвыми звёздными телами.

Чёрный карлик

Вдобавок, выделяют субкоричневые или коричневые субкарлики. По массе они уступают коричневым карликам. Более того, это совершенно холодные космические объекты.

 Чаще всего их относят к планетам.

Белые карлики

Белый карлик

Данные космические образования лишены источников термоядерной
энергии, они излучают слабый свет. Имеют приблизительно такую же массу, как Солнце,
а радиус — как планета Земля. В целом к белым карликам относится 3-10% всех
звезд. Постепенно данные виды звезд остывают и краснеют.

Одними из первых открытых звезд данного вида стали 40
Эридана B, Процион В и Сириус В.

Во время наблюдения за Сириусом была замечена маленькая
звездочка, что свидетельствовало о наличии звезды-спутника. Впоследствии объекту
дали название Сириус В. Та же история повторилась и с Порционом, который отклонялся
от прямолинейной траектории движения. Эти открытия послужили толчком для образования
нового класса звезд — белых карликов.

Как же образовываются белые карлики? Когда в центре звезды
выгорает весь водород, ее ядро сжимается, а внешние слои сильно расширяются.
Постепенно она тускнеет и превращается в красного гиганта, который затем сбрасывает
свою оболочку

Всего существует два класса белых звезд. Самый часто
встречающийся — «водородный» спектральный класс DA и «гелиевый белый карлик»
типа DB.

Помимо вышеперечисленных видов светил, существуют также
голубые, черные, коричневые и субкоричневые карлики.   

Научный взгляд на историю появления белых карликов

Дальше в небесных светилах на месте иссякших основных источников термоядерной энергии возникает новый источник термоядерной энергии, тройная гелиевая реакция, или тройной альфа-процесс, обеспечивающая выгорание гелия. Эти предположения полностью подтвердились, когда появилась возможность наблюдать поведение звезд в инфракрасном диапазоне. Спектр света обычной звезды существенно отличается от той картины, которую мы наблюдаем, глядя на красные гиганты и белые карлики. Для вырожденных ядер таких звезд существует верхний предел массы, в противном случае небесное тело становится физически неустойчивым и может наступить коллапс.

Вырождение ядра красного гиганта

Объяснить столь высокую плотность, которую имеют белые карлики с точки зрения физических законов практически невозможно. Происходящие процессы стали понятны, только благодаря квантовой механике, которая позволила изучить состояние электронного газа звездного вещества. В отличие от обычной звезды, где для изучения состояния газа используется стандартная модель, в белых карликах ученые имеют дело с давлением релятивистского вырожденного электронного газа. Говоря понятным языком, наблюдается следующее. При огромном сжатии в 100 и более раз, звездное вещество становится похоже на один большой атом, в котором все атомные связи и цепочки сливаются воедино. В таком состоянии электроны образуют вырожденный электронный газ, новое квантовое образование которого может противостоять силам гравитации. Этот газ образует плотное ядро, лишенное оболочки.

Модель белого карлика

В результате исследований ученых физиков в области квантовой механики, была создана модель белого карлика. Под действием сил гравитации, звездное вещество сжимается до такой степени, что электронные оболочки атомов разрушаются, электроны начинают свое собственное хаотичное движение, переходя из одного состояния в другое. Ядра атомов в отсутствие электронов образуют систему, образуя между собой прочную и устойчивую связь. Электронов в звездном веществе настолько много, что образуется много состояний, соответственно скорость электронов сохраняется. Большая скорость элементарных частиц создает колоссальное внутренне давление электронного вырожденного газа, который в состоянии противостоять силам гравитации.

Солнечное затмение

Солнечное затмение возникает, когда Луна полностью или частично закрывает Солнце от наблюдателя, находящегося на Земле. Данное явление возможно лишь в новолуние. Это определённая фаза, когда жёлтая звезда, голубая планета и Луна находятся на одной прямой. При этом земной спутник располагается в середине. Длительность интервала между новолунием составляет 29,5 суток.

За 100 лет происходит в среднем 235 солнечных затмений. Причём полностью солнечный диск закрывается в 62 случаях. 159 случаев – это частичное закрытие диска. То есть спутник Земли проходит не по центру солнечного диска, а скрывает от наблюдателя лишь его часть. Небо при этом темнеет незначительно. Такое затмение можно наблюдать на расстоянии около 2 тыс. километров от той зоны, где Луна полностью закрывает Солнце.

В 14 случаях наблюдается кольцевое затмение. В этом случае спутник проходит по солнечному диску, но оказывается меньше его в диаметре, поэтому не может скрыть звезду от наблюдателя.

При полном затмении хорошо видна солнечная корона. Но любоваться ей человечество сможет ещё не более 600 миллионов лет. По прошествию этого периода времени Луна отдалится от Земли так далеко, что полное солнечное затмение станет невозможным. Дело же в том, что спутник движется всё быстрее и быстрее, а голубая планета постепенно замедляет своё вращение. Таким образом, Луна отодвигается от земли на 4 см каждый год.

Что же касается Солнца, то оно ещё долго будет сиять в космической дали, давая землянам тепло и жизнь. Пройдут миллиарды лет, прежде чем начнутся кардинальные изменения, способные негативно повлиять на голубую планету. Будем надеяться, что к этому времени человеческая цивилизация найдёт возможность обезопасить себя от уничтожения. Единственное, что не удастся – это спасти само Солнце. Ведь Вселенная живёт в рамках космических циклов, каждый из которых имеет своё начало и свой конец.

Виталий Шипунов

Жизнь на планетах у красных карликов

Термоядерные реакции красных карликов «экономны» — нуклеосинтез в недрах этих звёзд проходит медленно (это связано с массой звезды, её размерами и т. д.). Поэтому жизненный цикл красных карликов в сотни раз длиннее, чем у звёзд таких как Солнце. Если на какой-нибудь планете возле красного карлика возникла простейшая жизнь, то вероятность, что она разовьётся во что-нибудь интересное — несравненно выше, чем у таких недолговечных звёзд, как Солнце. Это связано с тем, что для развития высокоорганизованной жизни требуются миллиарды лет эволюции.

Авторское представление об экзопланете, обращающейся вокруг красного карлика GJ 1214

НептуномЗемли

Проблемы, связанные с климатом планет

Поскольку красные карлики довольно тусклые, то эффективная земная орбита должна быть близкой к звезде. Но планета, расположенная слишком близко к звезде, становится постоянно обращённой к ней одной стороной. Данное явление называется приливным захватом. Оно может вызвать разницу температур в разных полушариях (ночном и дневном), поскольку на дневном полушарии всегда тепло (может быть — очень жарко), а на ночном температура может приближаться к абсолютному нулю. Это, в свою очередь, может вызвать сильные ветры в атмосфере планеты.

Красные карлики во много крат активнее Солнца. Очень мощные вспышки могут быть губительными для возможной жизни на планете. Но магнитное поле планеты могло бы решить эту проблему — оно было бы барьером для радиации (как у Земли).

Вывод

Если мы ищем благоприятные для жизни планеты, то они должны обладать магнитным полем, способным препятствововать смертоносному излучению. Планета должна иметь атмосферу с температурой и давлением способными содержать воду в жидком состоянии. Орбита планеты должна быть близка к круговой (орбитальный эксцентриситет как можно более близкий к нулю), чтобы температура поверхности была в течение года-дня более-менее постоянной.

Желтые карлики

Класс Цвет Вид объекта Примеры звезд
O голубой   Дзета, Лямбда Ориона, Кси Персея
В бело-голубой   Спика в созвездии Девы, Ригель, Эпсилон Ориона
А белый   Вега, Сириус А
F желто-белый   Процион А, Канопус
G желтый   Солнце, Тау Кита
K оранжевый   Арктур созвездии Волопас, Эпсилон Эридана, 61 Лебедя
M красный   Бельгейзе

Это небольшие звезды, массой примерно от 0,8 до 1,2 массы
Солнца, средней светимостью и температурой до 5000–6000 по Кельвину. Наше
светило тоже относится к данному классу карликов. Есть выражаться языком
ненаучным, то желтый карлик — образование очень маленькое. Человеческому глазу
же оно доступно скорее не в желтых, а в белых тонах. «Живут» подобные
космические образования всего 10 млрд лет, что очень мало, по сравнению с
другими типами звезд.

Желтый карлик

История их возникновения такова: в недрах звезд водород
превращался в гелий, который затем воспламеняется, стесняя водород к поверхности.
Таким образом, желтый карлик начинает все больше походить на красный. Но об
этом чуть позже.

Кроме Солнца, к желтым карликам относят две компоненты в
тройной системе Альфа Центавра – Альфа Центавра А и оранжевый карлик Альфа
Центавра В. Расстояние до этих двух образований составляет чуть больше 4-х
световых лет.

Чтобы не запутаться в цветах, стоит объяснить, откуда же
взялись оранжевые карлики, и какое отношение они имеют к желтым? Существует
некая спектральная классификация Моргана-Кинана, согласно которой образования
желтых тонов относятся классу светимости G, но в случае переходных вариаций, как раз тех самых оранжевых
карликов, к классу К, и в некоторых случаях к F. Последние — желто-белые карлики.

К классу светимости К также относятся Ран, она же Эпсилон
Эридана, с расстоянием до Земли 10 млрд световых лет и двухкомпонентная звезда 61
Лебедя, удаленная от нас примерно на 11 млрд световых лет.

Помимо Солнца, к классу светимости G относится Тау
Кита (12 млрд световых лет) и 51 Пегаса (50 млрд световых лет).

Жизнь и смерть Солнца

Начнем с того, что Солнце – это обычная звезда. Она озаряет Солнечную систему светом и теплом, устанавливая суточные циклы сна и бодрствования у всех живых организмов на нашей планете. Но Солнце не всегда будет таким. Наступит время, когда наша родная звезда погибнет, а вся Солнечная система превратится в очень неприятное место

Важно понимать, что все физические процессы протекающие на Солнце, в значительной степени определяют физику планет (по крайней мере ближайших к звезде)

Астрономы классифицируют Солнце как молодую звезду с высоким содержанием металлов. Это значит, что Солнце образовалось из останков более древних звезд. Текущий возраст нашего светила исследователи оценивают приблизительно в 4,6 миллиардов лет, а значит, звезда прожила примерно половину своей жизни, так как ее взросление – фаза главной последовательности – длится 10 миллиардов лет. После завершения этого срока наступит следующий этап ее эволюции. По мере того, как Солнце расходует запасы своего водородного топлива, оно становится все горячее, а его светимость увеличивается. К тому моменту, когда Солнце отметит свой 5,6 миллиардный день рождения, оно будет в 11 раз ярче, чем сегодня.

Ничто во Вселенной не вечно, тем более звезды

Исследователи полагают, что уже к этому моменту на нашей планете либо произойдет кардинальное изменение жизни, либо она и вовсе исчезнет. Вообще, некоторые ученые считают, что человеческая цивилизация погибнет задолго до того, как Солнце превратится в красного гиганта. Подробнее об этом я рассказывала в предыдущей статье.

Что такое белый карлик: звезда или фантом?

Только недавно, в XX веке ученым стало понятно, что белый карлик – это все, что осталось в космосе от обычной звезды. Изучение звезд с точки зрения термоядерной физики дало представление о процессах, которые бушуют в недрах небесных светил. Звезды, образовавшиеся в результате взаимодействия сил гравитации, представляют собой колоссальный термоядерный реактор, в котором постоянно происходят цепные реакции деления ядер водорода и гелия. В таких сложных системах темпы эволюции компонентов неодинаковы. Огромные запасы водорода обеспечивают жизнь звезды на миллиарды лет вперед. Термоядерные водородные реакции способствуют образованию гелия и углерода. Следом за термоядерным синтезом в дело вступают законы термодинамики.

Белый карликСхема термоядерного синтеза звезды

Термоядерный синтез истощает звезду. Водород иссякает, а гелий, как более массивный компонент может проэволюционировать дальше, достигнув нового состояния. Все это приводит к тому, что сначала красные гиганты образуются на месте обычной звезды, и звезда покидает главную последовательность. Таким образом, небесное светило, встав на путь своего медленного и неизбежного старения постепенно трансформируется. Старость звезды – это долгий путь в небытие. Все это происходит очень медленно. Белый карлик является небесным светилом, с которым вне пределов главной последовательности, происходит неизбежный процесс угасания. Реакция синтеза гелия приводит к тому, что ядро стареющей звезды сжимается, светило окончательно теряет свою оболочку.

Спектральная классификация

Звезды — громадные раскаленные шары, состоящие из газа. То, какими мы видим их с Земли, зависит от множества параметров. Например, звезды в действительности не мерцают. Убедиться в этом очень легко: достаточно вспомнить Солнце. Эффект мерцания возникает из-за того, что свет, идущий от космических тел к нам, преодолевает межзвездную среду, полную пыли и газа. Другое дело — цвет. Он является следствием нагрева оболочек (в особенности фотосферы) до определенных температур. Истинный цвет может отличаться от видимого, но разница, как правило, невелика.

Сегодня во всем мире используется гарвардская спектральная классификация звезд. Она является температурной и основывается на виде и относительной интенсивности линий спектра. Каждому классу соответствуют звезды определенного цвета. Разработана классификация была в обсерватории Гарварда в 1890-1924 гг.

Седна: самая удаленная

Удивительно, но Седна удалена от Солнца в 936 раз дальше нашей Земли. Это почти 150 миллиардов километров. Заметить планету удалось с помощью нескольких самых современных наземных и орбитальных телескопов. Рассмотреть объект ученые не смогли, но им удалось выяснить, что в диаметре карликовая планета составляет 1000 километров, замыкая ряд своих небесных «коллег». Еще одним открытием стали обнаруженные на объекте органические вещества в составе льда.

Это может говорить о том, что на планете при определенных обстоятельствах возможно зарождение жизни. Вполне вероятно, что под твердой корой может находиться вода в ее жидком состоянии. Гравитация Седны придает ей круглую форму, а цвет поверхности скорее всего красный.

Ученые по-прежнему не могут сойтись во мнении, сколько карликовых планет открыто в солнечной системе. Но каждое такое открытие — возможность более детально изучить нашу галактику, найти ответы на вопросы о зарождении планет нашей Вселенной.

Последние научные выводы

Небесные светила, с которыми мы имеем дело, представляют собой естественный природный полигон, благодаря которому человек может изучить строение звезд, этапы их эволюции. Если рождение звезд можно объяснить физическими законами, которые одинаково действуют в любой обстановке, то эволюция звезд представлена совершенно иными процессами. Научное объяснение многих из них переходит в категорию квантовой механики, науки об элементарных частицах.

Снимки белого карлика

Белые карлики выглядят в этом свете самыми загадочными объектами:

  • Во-первых, очень любопытно выглядит процесс вырождения ядра звезды, в результате которого звездное вещество не разлетается в космосе, а наоборот, сжимается до невообразимых размеров;
  • Во-вторых, при отсутствии термоядерных реакций, белые карлики остаются достаточно горячими космическими объектами;
  • В-третьих, эти звезды, имея высокую цветовую температуру, обладают низкой светимостью.

На эти и многие другие вопросы учеными всех мастей, астрофизикам, физикам и ядерщикам еще предстоит дать ответы, которые позволят предугадать судьбу нашего родного светила. Солнце ожидает судьба белого карлика, однако остается под вопросом, сможет ли человек наблюдать Солнце в этой роли.