20 фотографий звёздного неба от номинантов престижной премии astronomy photographer of the year 2021. есть из россии

Содержание

Всего существует 88 официальных созвездий

В 1922 году Международным астрономическим союзом было официально признано 88 созвездий, 48 из которых были описаны еще древнегреческим астрономом Птолемеем в его звездном каталоге «Альмагест» около 150 г. до н.э. В картах Птолемея были пробелы, особенно это касалось южного неба. Что вполне логично — созвездия, описанные Птолемеем, охватывали ту часть ночного неба, которая видна с юга Европы.

Остальные лакуны начали заполняться во времена великих географических открытий. В XIV веке голландские ученые Герард Меркатор, Питер Кейзер и Фредерик де Хаутман добавили к существующему списку созвездий новых, а польский астроном Ян Гевелий и французский Никола Луи де Лакайль довершили начатое Птолемеем. На территории России из 88-и созвездий можно наблюдать около 54-х.

Движение звезд — иллюзия и вопрос перспективы

Направление, в котором звезды движутся по ночному небу, обусловлено вращением Земли вокруг своей оси и действительно зависит от перспективы и от того, в какую сторону обращен лицом наблюдающий.

Глядя на север, созвездия, кажется, движутся против часовой стрелки, вокруг неподвижной точки ночного неба, так называемого северного полюса мира, расположенного возле Полярной звезды. Подобное восприятие связано с тем, что земля вращается с запада на восток, т. е. земля под вашими ногами движется направо, а звезды, как Солнце, Луна и планеты, над вашей головой следуют по направлению восток-запад, т. е. справа налево. Однако если вы повернетесь лицом на юг, звезды будут перемещаться словно по часовой стрелке, слева направо.

Так что же такое звездные крепости? Кем, когда и зачем они были построены?

Помимо версии фортификационного укрепления, сомнения в которой уже озвучены выше, есть две ключевые теории, объясняющие назначение звездных крепостей. Первая гласит, что крепости-звезды — это остатки былой цивилизации, которая таким образом получала энергию/электричество для повседневных нужд — поэтому и построены они повсюду, а размеры их разные — в зависимости от количества населения/потребности в энергии в той или иной местности. «Лучи» же как раз предназначены для концентрации энергии. Очень удобна и логична в этом плане «модульность» крепостей звезд — маленькие «базовые» — это почти всегда стандартной формы четырех- или пятиугольник, далее по мере роста могут быть построены промежуточные лучи — то есть их становится 8 или 10, и так — практически до бесконечности. То есть «базовая» звезда может остаться таковой, а может превратиться в тройную звезду в звезде со множеством лучей на каждом контуре. Сегодня мы не представляем как эта система работала, но в сфере электроники специалисты действительно находят некие аналогии с формой звездных крепостей, кроме того в этой связи имеет смысл вспомнить о разных «чудесных» свойствах других геометрических объектов — например, пирамид — более длительный срок хранения продуктов, самозатачивание лезвий и прочие интересные особенности, подтвержденные реальными опытами. То есть определенные геометрические формы и пропорции реально могут влиять на свойства предметов или пространства внутри них.

Сакральная геометрия

Другая версия возникновения звездных крепостей еще более фантастическая, но и у нее имеются свои аргументы. Возможно, звездные крепости возникают сами собой под воздействием неких процессов внутри нашей планеты. Ведь действительно они удивительно похожи на кристаллы или снежинки, насчет которых никто не возразит, что «мол, не может природа такое создать». А уже потом на их месте возникают города и военные укрепления… Некоторые исследователи указывали на то, что по их наблюдениям новые звездные формы продолжают возникать и сейчас в разных точках земли, где они не были замечены ранее и где не ведется какая-либо активная строительная деятельность. 

Снежинки

С другой стороны, не понятно, как тогда объяснить возникновение звездных крепостей, например, в той же Тоболо-Ишимской линии — где они идеально выстроены в прямую цепочку с равными интервалами… или разумная Мать-Земля передает нам некие сигналы такими вот своеобразными мыслеформами?

Так что загадка звездных крепостей до настоящего времени остается неразгаданной и ждет своего исследователя. Заинтересованные в ней могут легко найти огромное количество фотографий, карт, градостроительных планов и вообще рассуждений на тему звездных крепостей в свободном доступе. Есть и Google Карта с отмеченными крепостями по всему миру (спасибо тому безымянному человеку, который проделал этот титанический труд!).

____

*Для иллюстрации в качестве прототипа использован образ крепости Святой Анны (ст. Старочеркасская). Собирательное название «Форт Звёздный» посвящается всем известным, забытым и безымянным звездным крепостям на просторах нашей Родины.

Крепость Cвятой Анны, ст. Старочеркасская

История наблюдений за звездами

Сейчас можно легко купить телескоп и наблюдать на ночным небом или воспользоваться телескопами онлайн на нашем сайте. С древних времен звезды на небе играли важную роль во многих культурах. Они отметились не только в мифах и религиозных историях, но и послужили первыми навигационными инструментами. Именно поэтому астрономия считается одной из древнейших наук. Появление телескопов и открытие законов движения и гравитации в 17 веке помогли понять, что все звезды напоминают наше Солнце, а значит подчиняются тем же физическим законам.

Фотография умирающей звезды. Изображение получено космическим телескопом Хаббл

Изобретение фотографии и спектроскопии в 19 веке (исследование длин волн света, исходящих от объектов) позволили проникнуть в звездный состав и принципы движения (создание астрофизики). Первый радиотелескоп появился в 1937 году. С его помощью можно было отыскать невидимое звездное излучение. А в 1990 году удалось запустить первый космический телескоп Хаббл, способный получить наиболее глубокий и детализированный взгляд на Вселенную (качественные фото Хаббла для различных небесных тел можно найти на нашем сайте).

Состав

Звезды на небе – это огромные и в то же время простые системы элементарных частиц.

Космический газовый шар средней величины построен из невероятно большого количества нуклонов (протоны и нейтроны), которое можно выразить цифрой с пятьюдесятью семью нулями.

Количество нуклонов нашего Солнца в триста тысяч раз превышает количество нуклонов, из которого состоит Земля. Количество вещества в этом теле и массу выражает количество нуклонов из которых оно складывается.

Несмотря на то, что Солнце как система по размерам во много раз превышает Землю, все же оно намного проще нашей планеты по составу. Именно такой химический состав Солнца обеспечивает эволюцию человечества.

Земля, как и остальные планетные тела, состоит из пород, порода – из кристаллов, кристаллы – из молекул, молекулы – из атомов, атомы – из ядра и электронов.

Звезды  на небе построены лишь из ядер и электронов. Именно из-за простого состава  простым является  определение температуры, массы, давления и химических элементов в любой точке внутри. Но рассчитать те же самые характеристики Земли мы пока не умеем.

Стоит отметить тот факт, что астрономы знакомы с недрами далеких звезд лучше, чем с недрами планеты, на которой мы живем.

Свойства и поведение плазмы в настоящее время достаточно хорошо изучены: известно, например, что давление в плазме тем выше, чем она горячее и плотнее. В то же время давление в определенной точке внутри  равно весу всех слоев, находящихся над этой точкой.

Если давление плазмы повышается, то звезда расширяется, в противном случае она сжимается.
Даже самые маленькие  обладают массой, примерно в десять тысяч раз превышающей массу Земли.

Самые крупные звезды на небе обладают массой в миллионы раз большей, чем масса Земли.

Пулковская обсерватория

Пулковская астрономическая обсерватория существует с 1839 года и более сотни лет носит статус охраняемого объекта ЮНЕСКО. Она находится в пригороде Санкт-Петербурга и принадлежит Российской академии наук. У обсерватории свой исследовательский центр: в его штабе около 300 человек, треть из которых — научные сотрудники. Здесь наблюдают за всеми приоритетными направлениями фундаментальных исследований современной астрономии: от небесной механики до физики и эволюции звезд.

На территории Пулковской обсерватории находится музей и четыре телескопа. Включая солнечный, через который можно наблюдать за Солнцем в ясную погоду. В обсерваторию можно заказать частную экскурсию для компании или купить индивидуальный билет на одно из запланированных мероприятий, с анонсами которых можно ознакомиться на сайте. Большая часть экскурсий включают в себя наблюдения и рассчитаны на взрослых и старшеклассников обычных и специализированных школ. При первом посещении сотрудники рекомендуют взять билет на 26-дюймовый рефрактор, который ведет наблюдения каждую ясную ночь.

Наблюдение за лунным затмением в Пулковской обсерватории, 2018 год

(Фото: Марина Лысцева / ТАСС)

Планетарий № 1 в Санкт-Петербурге

Крупнейший в мире планетарий можно найти в Санкт-Петербурге. Он расположился в здании старейшего газгольдера России. Общая площадь комплекса — 4 тыс. кв. м. В Планетарии № 1 помимо самого купола находятся музей с космическими экспонатами, каток и кинотеатр.

Диаметр купола, на котором отображаются планеты и созвездия, — 37 м. Изображения космических тел на него передают 40 прожекторов. Разрешение звездных изображений — 256 пикселей. Это дает возможность показать зрителям даже самые отдаленные космические объекты в мелких деталях.

Купол построен под наклоном таким образом, что проекция звездного неба доходит до самого пола — это позволяет посетителям не только насладиться проекцией, но и сделать на ее фоне впечатляющие фотографии. Днем здесь проводят лекции, а по вечерам — джазовые концерты. Помещение под звездным куполом также можно арендовать на двоих и провести романтический вечер.

Купол Планетария в Санкт-Петербурге

(Фото: spb-gid.ru)

Каким образом астрономы знакомятся с этими небесными объектами?

При помощи наблюдений астрономы прежде всего определяют массу, радиус и температуру на поверхности. Хотя недра звезд мы и не видим, но нам известно, что они состоят из плазмы.

Температура измеряется с помощью анализа излучения, исходящего с поверхности этого небесного тела. Из недр звезд не может вырваться ни один фотон, поэтому с “внутренностями” мы никогда непосредственно не знакомимся.

И все же человек способен точно рассчитать температуру в любой точке в глубинах этого космического тела. Так, например, в центре Солнца температура достигает тринадцати миллионов.  Более трех миллиардов  достигает температура в недрах звезд с самой большой массой.

Открытый космос дома

Для тех, кто не готов ездить в планетарии в соседние города или хочет смотреть на космос без преград в любой момент времени, существуют интернет-платформы прямого наблюдения за звездным небом. На сайте Geocam можно в прямом эфире наблюдать вид на Землю или открытый космос через камеры, установленные на спутниках. Некоторые из трансляций можно смотреть со звуком.

Через сайт Cosmos-online можно следить за камерами с Международной космической станции. Трансляцию организует управление NASA. Кадры с видом на Землю попадают в камеру только в моменты, когда астронавты отдыхают. В остальное время передатчики нужны им для работы, и в эфир транслируется заставка с нынешнем положением станции. Тем, кто хочет посмотреть на Землю, стоит рассчитать время: космонавты на МКС живут по Гринвичу, время отстает от московского на три часа.

Вид на землю с МКС

(Фото: NASA)

На виды космоса можно смотреть и через телескопы. На сайте Гарвард-Смитсоновского центра астрофизики можно заказать фотографию с любого из доступных телескопов и получить ее на почту. Но нужно дождаться, пока он сделает снимок — этот процесс может занять некоторое время.

В прямом эфире за телескопами можно наблюдать на платных порталах iTelescope и Slooh. В среднем подписка стоит около $5 в месяц. За дополнительную плату можно воспользоваться функцией управления телескопом и ненадолго почувствовать себя настоящим астрономом.

Tesla Motors

На Марсе нет кислорода, а значит, транспорт там может быть только электрическим. Именно поэтому в Пало-Альто (Калифорния) в 2003 году была основана Tesla Motors. Маск возглавил компанию в 2008-м, сделав ее крупнейшим автопроизводителем мира. В Tesla Motors работают инженеры, которые занимались созданием американских марсоходов.

Цель: сделать электрический транспорт массовым.

Достижения: в 2020 году в мире было продано почти 500 тыс. электромобилей Tesla. Налажен выпуск четырех моделей, идет разработка внедорожника Cybertruck, родстера и грузовика Semi. Сеть заправок Tesla Supercharger насчитывает более 2000 станций. Отрабатывается и частично применяется система беспилотного управления Tesla Autopilot.

Обозначения ярких звезд в созвездиях

Астрономы давно поняли, что при детальном изучении звездного неба одними лишь именами обойтись не удастся — звезд слишком много!

Система Байера

В 1603 году немецкий астроном Иоганн Байер издал звездный атлас «Уранометрия», в котором впервые звезды обозначались буквами греческого алфавита в порядке убывания блеска. Самая яркая звезда в созвездии обозначалась буквой α (альфа), вторая по яркости — β (бета), третья — γ (гамма) и так далее, вплоть до омеги. Если в созвездии было много звезд и 24 букв алфавита не хватало, Байер использовал латинский алфавит: сначала строчные буквы, а затем и заглавные (последние только до буквы Q).

В атласе Байера ярчайшая звезда ночного неба, Сириус, стала обозначаться как α Большого Пса, а звезда Арктур как α Волопаса.

Эта система прижилась в астрономии и широко используется по сей день. Правда, принцип убывания яркости не всегда соблюдается. Например, звезды ковша Большой Медведицы обозначены не по яркости, а просто справа налево: крайняя звезда ковша — α Большая Медведицы, а крайняя звезда ручки ковша — η Большой Медведицы. Бывает и так, что самая яркая звезда в созвездии не альфа, а бета или гамма. Нередко это связано с тем, что во времена Байера яркость звезд определялась очень неточно, на глаз.

Как обозначаются звезды в созвездиях: Система Флемстида

В XVII веке английский астроном Флемстид предложил обозначать звезды в созвездиях просто цифрами. При этом порядок присвоения цифр звездам созвездия зависел не от их яркости, а от порядка пересечения ими небесного меридиана. (То есть в конечном счете от координат звезды.)

В этой системе Сириус стал обозначаться как 9 Большого Пса. Это значит, что Сириус — девятая по очередности звезда из созвездия Большого Пса, которая пересечет небесный меридиан на юге.

Сегодня на картах звездного неба самые яркие звезды в созвездиях обозначены греческими буквами по системе Байера, а более тусклые обозначены цифрами по системе Флемстида. Латинские буквы Байера для обозначения звезд используются редко, зато на карты часто наносят имена самых ярких звезд.

В какой интерьер вписывается

Полотно натяжного потолка можно установить почти в любую комнату, но так как оно оказывает сильное влияние на интерьер, определенные дизайнерские решения подойдут только в отдельных случаях. Давайте рассмотрим, в какие комнаты подойдет потолок в стиле звездного неба.

Наиболее привлекательным решением является разместить звездное небо в спальной комнате. Полотно усыпанное звездами не просто создаст необходимое настроение, но и поможет создать романтичный эффект и увлечет в сны когда это нужно.

Если сделать точную копию звездного неба в детской комнате, то такой подвесной потолок научит ребенка чему-то новому, познакомит с астрономией, подружит с космосом. Спальня место крепкого сна и такой потолок вас не отвлечет от него. В гостиной комнате, такой дизайн потолка, создаст уникальную обстановку, при которой атмосфера комнаты станет умиротворенной и успокаивающей. На кухне звездное небо то же смотрится неплохо.

Сегодня известны три способа, как сделать потолок звездное небо в спальне:

  1. При помощи световодного оптического волокна, либо ламповых и светодиодных проекторов.
  2. Используя светодиодное освещение и программируемый блок управления.
  3. Покрасив полотно потолка люминесцентной краской.

Монтаж такого потолка так же прост, как и натяжного, разницы между ними нет никакой. Давайте рассмотрим более подробно эти способы.

Созвездия путешествуют с востока на запад, как Солнце

Как только начинает темнеть, в сумерках, в восточной части неба появляются первые созвездия, чтобы пройти по всему небосклону и исчезнуть с рассветом в западной его части. Из-за вращения Земли вокруг своей оси создается впечатление, что созвездия, как и Солнце, восходят и заходят. Созвездия, которые мы только что наблюдали на западном горизонте сразу после захода Солнца, вскоре исчезнут из нашего поля зрения, чтобы их заменили созвездия, которые находились выше во время заката всего лишь несколько недель назад.

Созвездия, возникающие на востоке, имеют суточный сдвиг около 1 градуса в день: завершение 360-градустного путешествия вокруг Солнца за 365 дней дает примерно такую же скорость. Ровно через год в то же самое время звезды займут на небе точно такое же положение.

Созвездия-знаменитости

Самое большое созвездие — Гидра, оно простирается более чем на 3% ночного неба, в то время как наименьшее по площади, Южный Крест, занимает всего лишь 0,165% небосвода. Центавр может похвастаться наибольшим количеством видимых звезд: 101 звезда входит в знаменитое созвездие южного полушария неба.

В созвездие Большого Пса входит самая яркая звезда нашего неба, Сириус, блеск которой равен −1,46m. А вот созвездие с названием Столовая Гора считается самым тусклым и не содержит звезд ярче 5-ой звездной величины. Напомним, в числовой характеристике яркости небесных тел чем меньше значение, тем ярче объект (яркость Солнца, например, составляет −26,7m).

SpaceX

Со SpaceX понятно: надо же на чем-то долететь до Красной планеты. Компания основана в 2002 году для создания технологий революционного упрощения и удешевления космических полетов с дальней целью колонизации Марса.

Цель: сделать человечество межпланетным видом.

Достижения: в 2010 году SpaceX стала первой частной компанией, сумевшей вывести на орбиту собственный космический корабль Dragon и благополучно вернуть его на Землю, а с 2012-го регулярно отправляет «грузовики» на МКС. В 2015 году первая ступень ракеты SpaceX Falcon 9 совершила мягкую посадку, а в 2017-м была запущена еще раз. Проведены 124 успешных запуска и 86 посадок, 65 раз ракеты SpaceX использовались повторно. Идет развертывание орбитальной группировки глобальной системы связи Starlink. Проходят испытания будущий громадный пилотируемый корабль Starship, который должен доставить людей на Марс, и сверхтяжелая ракета для его выведения.

Остаток эволюции – нейтронное космическое тело

Ученые уже посчитали когда и как потухнет Солнце и закончит свою эволюцию.

По состоянию на сейчас термоядерная реакция на Солнце израсходована на 50% в течении 5 млрд лет, следовательно Солнце не потухнет еще 5 млрд лет.

После того как полностью будут исчерпаны ядерные реакции Солнце под влиянием гравитации коллапсирует в шар диаметром примерно 20-30 километров.

В результате этого плотность коллапсировавшего ядра станет огромной: 10 15 — 1017 кг/м3, то есть 1012-1014 г/см3.  При столь большой плотности вещество способно существовать лишь в виде нейтронов, потому что все протоны в ядрах, соединившись с электронами, превратились в нейтроны. Образуется нейтронная звезда на небе.

При гравитационном коллапсе ядро газового шара сосредотачивает в себе магнитные силовые линии. Поскольку их количество не изменилось, а они были всего лишь сжаты на маленькой поверхности нейтронной звезды, интенсивность магнитного поля на поверхности резко возрастает при коллапсе ядра. Нейтронная звезда при коллапсе начинает быстро вращаться. Магнитное поле нейтронной  уносит с собой множество электронов, которые светятся всякий раз, когда двигаются по направлению к нам. Излучение нейтронной звезды (прежде всего в диапазоне радиоволн) напоминает мигающий свет на машине скорой помощи. Излучение нейтронных тел пульсирует, и по этой причине их называют также пульсарами.

До сих пор мы говорили только о ядре, которое вследствие коллапса превращается в нейтронный пульсар. Слои оболочки, потерявшие опору, находятся на высоте сто тысяч километров над нейтронной звездой, но это продолжается всего лишь несколько секунд. В мощном гравитационном поле нейтронной звезды слои оболочки красного гиганта падают, подобно гигантскому стремительному водопаду на поверхность. При падении на нейтронный шар богатая водородом плазма оболочки гиганта сильно нагревается, в результате чего в ней в ничтожно короткое время происходят различные термоядерные реакции.

Собственно, речь идет о невероятно большой «водородной бомбе», разбросавшей всю плазму в окружающее межзвездное пространство. Взрыв – его называют сверхновой – столь грандиозен, что разбросанные вокруг нейтронного пульсара слои оболочки можно наблюдать спустя столетия.

Примером может послужить сверхновая в созвездии Тельца. Световое излучение этого процесса достигло Земли и было записано китайскими и арабскими астрономами в 1054 году. Сейчас определено, что  нейтронная звезда пульсирует не только в диапазоне радиоволн, но также в видимом инфракрасном спектре, в диапазоне рентгеновском и дает космическое гамма излучение. Расширяющаяся плазма этой сверхновой – туманность, которая названа Крабовидной.  Сейчас «Крабовидная туманность» в виде продолговатого пятна хорошо видна в бинокль.

Таким образом, звезды на небе представляют небесные светила имеющие различные “внеземные” характеристики и свойства.

Как отследить полет спутника через компьютер

Findstarlink.com

Find Starlink — англоязычный сервис от анонимных разработчиков, который предсказывает, когда именно в течение следующих пяти дней можно будет увидеть спутник. Введите свои страну и город (либо точные координаты), затем нажмите на кнопку Find Visible Times.

Появится список спутников, разделенных на три группы:

  • с хорошей видимостью (good visibility);
  • со средней видимостью (average visibility);
  • с плохой видимостью (poor visibility).

Часть спутников, которые можно было наблюдать в Москве 14 июля 2021 года

(Фото: findstarlink.com)

Для каждого прибора указаны:

  • его номер;
  • местные дата, время и период, когда спутник будет виден, — возможны погрешности около 10 минут;
  • показатель яркости (dim) — чем меньше цифра, тем лучше заметен прибор на небе;
  • направление движения (look) — например, с юго-запада на восток;
  • высота над горизонтом в градусах — в начале и в конце наблюдения, а также максимальное значение. Большинство спутников Starlink в начале наблюдения располагаются на высоте 10º. Если вы вытянете руку и расположите кулак на линии горизонта, прибор Starlink будет находиться примерно там, где костяшки пальцев.

На 2D-карте можно наблюдать за устройствами Starlink в реальном времени. Спутники перемещаются не поодиночке, а группами из 30–40 устройств. Но сайт показывает только первый прибор из каждой серии, чтобы не перегружать систему. Разработчики предупреждают, что данные могут быть неточными, так как траектории движения часто меняются.

2D-карта со спутниками и траекторией их движения

(Фото: findstarlink.com)

Лучше всего на ночном небе видно устройства, которые запустили три-четыре дня назад или чуть раньше. В это время они поднимаются к орбите и находятся под определенным углом к Земле и Солнцу, поэтому наиболее ярко отражают свет. Подробнее принцип работы спутников описывают на сайте SpaceX. **

В 2020 году астрономы сообщили Илону Маску, что устройства Starlink слишком ярко отражают свет и мешают ученым вести наблюдения за космическими телами. Основатель SpaceX ответил в Твиттере, что компания работает над тем, чтобы сделать спутники невидимыми на небе.

Satflare.com

Англоязычный сайт satflare.com показывает, как выглядит Земля с орбиты МКС. В том числе здесь можно увидеть движение спутников от SpaceX в реальном времени на 2D- и 3D-картах.

Авторизуйтесь на сайте либо войдите как гость, нажав Enter without Login.

Фото: satflare.com

Перейдите в раздел Starlink Trains и выберите, за какой серией спутников вы хотите наблюдать. Например, Starlink 1 были запущены 24 мая 2019 года, а Starlink 24 — 24 марта 2021 года. Можно выбрать для наблюдения все серии.

Фото: satflare.com

Задайте свое местоположение.

Первый способ: нажмите на кнопку Set Your Location, укажите свои координаты и высоту в метрах над уровнем моря.

2D- и 3D-карты со спутниками

(Фото: satflare.com)

Второй способ: найдите нужную точку на карте и дважды кликните на нее, пока не появится иконка домика.

Фото: satflare.com

Сервис может предсказывать, какие устройства Starlink будут видны над вашим местоположением в течение следующих пяти дней. Чтобы узнать прогноз, укажите нужную локацию и нажмите кнопку Predict Passes — появится список спутников. Для каждого устройства указаны:

  • номер;
  • местные дата, время и период, когда можно увидеть спутник;
  • время, когда прибор будет наиболее заметен;
  • координаты;
  • степень видимости.

На satflare.com есть звездная карта. Она показывает движение устройств Starlink на небе относительно выбранного местоположения. Зеленые линии — траектории хорошо заметных спутников. По серым движутся те, которых почти не видно.

Звездная карта, на которой отмечены траектории спутников

(Фото: satflare.com)

Размеры

Размеры звезд на небе могут быть самые разные.

Белые карлики по своим размерам равны Земле, в то же время их плотность примерно в миллион раз превышает плотность земли.

Самые маленькие звезды, которые приходилось наблюдать –  нейтронные. По объему они в сто миллионов раз меньше Земли. Чтобы в такой маленький объем могла вместиться громадная  масса, не уступающая массе обычных  нейтронные  должны обладать фантастической плотностью. Вещество этих объектов состоит только из нейтронов. Их наблюдают как пульсирующие источники радиоизлучения и называют пульсарами.

Нейтронные звезды на небе – пульсары имеют массу несколько раз больше массы Солнца.

Эволюция или развитие

Эволюция звезды представляет собой постепенное повышение температуры в ее недрах.

Эволюция начинается с  темно газо-пылевой туманности глобулы, температура которой повышается и со временем может дойти до ядра, состоящего из железа, с температурой три с половиной миллиарда. Далее гравитация начинает сжимать глобулу в протозвезду как завершающий этап формирования.

Двойные звезды

Мы привыкли, что наша система освещается исключительно одной звездой. Но есть и другие системы, в которых две звезды на небе вращаются по орбите относительно друг друга. Если точнее, только 1/3 звезд, похожих на Солнце, располагаются в одиночестве, а 2/3 – двойные звезды. Например, Проксима Центавра – часть множественной системы, включающей Альфа Центавра А и B. Примерно 30% звезд в Млечной Пути многократные.

Двойная звезда в Большой Медведице

Этот тип формируется, когда две протозвезды развиваются рядом. Одна из них будет сильнее и начнет влиять гравитацией, создавая перенос массы. Если одна предстанет в виде гиганта, а вторая – нейтронная звезда или черная дыра, то можно ожидать появления рентгеновской двойной системы, где вещество невероятно сильно нагреется – 555500 °C. При наличии белого карлика, газ из компаньона может вспыхнуть в виде новой. Периодически газ карлика накапливается и способен мгновенно слиться, из-за чего звезда взорвется в сверхновой типа I, способной затмить галактику своим сиянием на несколько месяцев.

Самые интересные звездные крепости на территории России на карте

Перечислим самые известные и интересные звездные крепости на нашей территории. Самая лучшая сохранность, конечно, у Петропавловской крепости, которая соответствует всем параметрам крепости-звезды. Историки пишут, что ее «спроектировал» некто Ламбер по указу Петра I, но почему-то стены слишком низкие для того, чтобы эффективно служить защитным целям, а первые этажи заглублены в землю, что характерно для значительного количества построек Петербурга и позволяет выдвигать предположение о том, что Петр Первый город — как и Петропавловскую крепость — не построил, а скорее «откопал» и «отреставрировал».

Но вернемся к перечню (который, конечно, далеко не полный). Крепости звезды лежат в основе Ростова Великого, Таганрога, Смоленска, Кизляра, Великих Лук, Омска, Тамани, Владивостока, Астрахани, Керчи, Севастополя, Бийска, Оренбурга, Петропавловска, Адлера, Балтийска (Пиллау), Геленджика, Калининграда, Твери, Челябинска, Сергиевого Посада… Орешек, Выборг, Ниеншанц, Осиновая Роща — все также являются звездными крепостями.

Выборг


Кизляр


Ивангород


Омск

Петропавловск

Обратите внимание на верхний правый луч — он как бы недостроен, потому что упирается в естественную преграду — но почему строители не могли отойти от идеальной симметричной формы звезды и сделать его, например, короче — или сместить правее?. Касательно детальных планов разных «звездных» городов, впрочем, существует предположение, что все они в некотором смысле «подделка»

То есть крепости-звезды в XVII–XVIII веке НЕ строились, а именно наносились на карты. Как бы то ни было, по таким планам очень хорошо видны их пропорции. В реальности мало где крепости сохранились в наше время в такой хорошей детализации.

Касательно детальных планов разных «звездных» городов, впрочем, существует предположение, что все они в некотором смысле «подделка». То есть крепости-звезды в XVII–XVIII веке НЕ строились, а именно наносились на карты. Как бы то ни было, по таким планам очень хорошо видны их пропорции. В реальности мало где крепости сохранились в наше время в такой хорошей детализации.

Владимирский планетарий

Планетарий во Владимире открылся через год после первого полета человека в космос — в 1962 году. Посетители Владимирского планетария могут узнать о возможности жизни на соседних планетах и в других частях вселенной, научиться различать созвездия и поучаствовать в поэтических вечерах под небом купола. Помимо лекций об астрологии и космонавтики здесь проводят беседы об экологии, биологии, географии и истории. Все лекции носят познавательно-развлекательный характер и помогают детям расширить знания школьной программы.

Сотрудники планетария не только проводят лекции в его здании, но и выезжают с программами в школы, детские сады и вузы: активная лекционная деятельность — одна из отличительных черт Владимирского планетария. А несколько раз в год сотрудники проводят для всех желающих наблюдения за Луной и звездами через телескоп.

The Boring Company

На Красной планете большую часть строений придется убирать под землю, поэтому в 2016 году Маск выделил из SpaceX компанию The Boring Company, которая занимается технологией ускоренного строительства транспортных тоннелей – прежде всего для будущих поездов Hyperloop. Первый тоннель на глубине 4,6 м вырыли на территории офисов SpaceX в Хоторне, поскольку для строительства на этой площадке не требовалось никаких разрешений.

Цель: решение проблемы трафика, обеспечение быстрого перемещения из точки в точку, трансформация городов.

Достижения: разработана и построена собственная тоннелепроходческая машина Prufrock. Любопытно, что размеры (3,7 м в диаметре) позволяют разместить ее на борту корабля SpaceX Dragon. Проложены экспериментальные тоннели в Лас-Вегасе и Лос-Анджелесе. Еще несколько проектов в Лос-Анджелесе, Чикаго и Балтиморе ожидают одобрения властей.

Крепости звезды в Сибири

Отдельного упоминания заслуживают укрепленные линии обороны Сибири (Тоболо-Ишимская, Иртышская, Колывано-Кузнецкая), построенные вроде как в XVIII веке по указу Петра для защиты от неких кочевников. Надо сказать, что это одна из самых грандиозных и протяженных оборонительных линий мира (порядка 2000 км!), а вот о серьезных столкновениях Российской Империи с джунгарами или кем-то еще в этом регионе в это время нам особо неизвестно…

План сибирских укреплений.  

Эти линии обороны состоят из крепостей, форпостов, редутов и станций (перечисляем от большего к меньшему) расположенных не далее, чем 20 км друг от друга (в среднем). Практически все крепости и форпосты этих линий попадают под описание звездных крепостей, а так называемая Покровская крепость — от которой сегодня остались одни земляные валы посреди голого поля, так вообще является классическим сооружением данного типа и идеально просматривается с воздуха…

Покровская крепость

Примечательно и вот еще что — если это линия обороны, то в чем ее военный смысл без «стены», соединяющей все крепости? Не так уж сложно группам неприятеля пройти незамеченным через открытое пространство протяженностью в 20 км.